• Title/Summary/Keyword: fuel composition

Search Result 538, Processing Time 0.024 seconds

Fuel Characteristics of Sewage Sludge in a Fluidized Bed Incinerator (유동상 소각로에서 하수 슬러지 연료 특성)

  • Choi, Jin-Hwan;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.81-91
    • /
    • 1999
  • Fuel characteristics of sewage sludge as required for the fluidized bed incinerators have been evaluated. Sewage sludge is basically a solid fuel with high percentage of moisture. Moisture content of the fuel directly affects the heating value of the fuel and the exhaust gas composition. When the sludge of transported into the incinerator, sludge cake is subject to the mixing, break-up and heat-up. Fluidization process would enhance these physical processes. The sludge fuel could then undergo the moisture evaporation and devolatilization process. Subsequent oxidation of volatiles as well as the remaining char would then follow. Sludge samples are characterized with high percentage of volatiles out of total combustibles. Quantitative understanding of above listed subprocesses would certainly help in the utilization of fluidized bed incinerators. A limited set of fuel characterization tests including calorimetric analysis, proximate analysis, elemental analysis and thermogravimetric analysis were conducted for the selected sludge samples. The measurement reasults of sludge samples were reported along with some published data. Limited experience in the actual incinerator plant is also presented.

  • PDF

Effects of Natural Gas Composition on Combustion Characteristics in a Gas Engine (쳔연가스 연료조성이 엔진 연소특성에 미치는 영향)

  • 이중성;유현석;윤영석;한정옥
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.32-41
    • /
    • 1999
  • Natural gas is an attractive fuel in view of environment benefits due to its flow carbon-to-hydrogen ratio. However, its compositions and properties are varied depending upon production regional groups. Therefore, study on the combustion characteristics of natural gas engines with a variety of compositions has been demanded for the efficient application of gas engines. This study aims to investigate the effects of gas composition on engine combustion characteristics. It was found that , by controlling an engine with fixed fuel nozzle area, power and heat release were subject to Wobbe Index. And at fixed excess air ratios, power and heat release were subject to low heating value of unit mixture . In addition, in case of constant nozzle area, combustion duration was found to be inversely proportional to CP(Combustion Potential), and the condition of fixed excess air ratios showed no change in combustion duration, regardless of CP.

  • PDF

Study on Optimization of Bioheavy Oil Combustion and Conversion Control System in a Heavy Generation Power Plant (B.C유 전소발전소에서 바이오중유 혼소·전소시 제어시스템 최적화 방안 고찰)

  • Lee, Kabju;Chung, Jindo
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.93-101
    • /
    • 2022
  • Bioheavy oil, which is expanding its range of use as an alternative fuel to reduce environmental pollutant emissions, has a lot of difficulty in combustion due to its low emission of pollutants such as nitrogen oxide (NOx) and sulfur oxide (SOx), while its low dissipation and high oxygen content in fuel. many studies have been conducted on change in characteristics by mixing rate combustion characteristics and combustion reactions, but there have been no specific and effective studies on the composition of control system, optimization of control, development of logic for mixing and burning, minimizing environmental pollutantants discharge. In this study, we intend to consider systemmatic and empirical considerations on the composition, logic development, solve the problem of manual switching of bioler master due to excessive oxygen content and tuning of the control system for optimal combustion of bioheavy oil.

Biogas Purifying for Fuel cell Power Plant (연료전지 발전을 위한 바이오가스정제)

  • Lee, Jong-Gyu;Jun, Jae-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.439-444
    • /
    • 2007
  • Using the anaerobic digester gas as a fuel, fuel cells have the potential to provide significant environmental and economic benefits. A molten carbonate fuel cell power plant was installed in the municipal sewage works of Tancheon in Seoul. The fuel cell unit operates on anaerobic digester gas and provides power and heat for the sewage works. This is the first project of its kind in Korea. This article outlines the experiences of gas purification process with planning, installation and operation. The engineering and installation phase is described regarding to the special features of digester gas, for example impurities in gas composition. Such impurities would be harmful to fuel cells. Operational results from the field test with a gas purification process plant are presented in this paper.

Fuel Composition Heterogeneity Effect for DUPIC Core

  • Park, Hangbok;Bo W. Rhee;Park, Hyunsoo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.109-114
    • /
    • 1995
  • A preliminary study of the heterogeneity effect of spent P% fuel in CANDU was made using a reduced spent PWR fuel data base. The instantaneous core simulation has shown that the refueling ripple in the CANDU reactor is large if the spent PWR fuel is directly used. But the fuel heterogeneity effect can be reduced appreciably by blending spent PWR fuel with a small amount of fresh UO$_2$. The refueling simulation has shown that the operating margins of 6.0% and 8.7% are achievable for the peak channel and bundle powers, respectively, with the blended fuel.

  • PDF

Analysis of ultrasonic scattering from nuclear fuel pins of liquid metal reactor (액체금속로 핵연료봉의 초음파 산란 해석)

  • 주영상
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.247-250
    • /
    • 1998
  • The scattering of plane ultrasonic waves by the nuclear fuel pin of liquid metal reactor in sodium is studied. According to the internal composition in the cladding tube, the fuel pin has three cross sections, i.e. helium gas plenum, sodium-filled section, and fuel insertion section. The scattering spectra for each section of the fuel pin are different. The circumnavigating ultrasonic waves of each section are analyzed by the resonance scattering method. The whispering gallery wave modes are generated in the sodium-filled plenum section and the fuel rod insertion section with a sodium-gap. The circumferential wave modes are propagated in the cladding tube of the helium gas plenum section. The annular gap between the cladding tube and metal uranium pellet rod affects the scattering spectra. The different propagation characteristics can be utilized for the nondestructive method of detecting the unbonded area and measuring the level of the sodium-filled section of the fuel pin.

  • PDF

Spent fuel characterization analysis using various nuclear data libraries

  • Calic, Dusan;Kromar, Marjan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3260-3271
    • /
    • 2022
  • Experience shows that the solution to waste management in any national programme is lengthy and burdened with uncertainties. There are several uncertainties that contribute to the costs associated with spent fuel management. In this work, we have analysed the impact of the current nuclear data on the isotopic composition of the spent fuel and consequently their influence on the main spent fuel observables such as decay heat, activity, neutron multiplication factor, and neutron and photon source terms. Nuclear libraries based on the most general nuclear data ENDF/B-VII.0, ENDF/B-VII.1, ENDF/B-VIII.0 and JEFF-3.3 are considered. A typical NPP Krško fuel assembly is analysed using the Monte Carlo code Serpent 2. The analysis considers burnup of up to 60 GWd/tU and cooling times of up to 100 years. The comparison of results showed significant differences, which should be taken into account when selecting the library and evaluating the uncertainty in determining the characteristics of the spent fuel.

Determination of hey Fuel Ratio According to Fuel Composition (IV) - Overall Estimation of Methods- (연료 조성에 따른 공연비 산정 (IV) - 공연비 계산방식의 평가-)

  • Park Chanjun;Ohm Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1155-1162
    • /
    • 2004
  • This paper is the forth paper of several companion papers which compare the method of Air-Fuel ratio determination. In the previous work, various AFR calculations were performed for various fuels and the results were compared with each other. The comparison, however, were limited to numerical value and estimation of each equation or method was insufficient. In this paper, the overall estimation of the methods was attempted. Also, the method of trouble shooting of instrumentation was presented. Through the estimation of methods, it is concluded that the Eltinge method contains inherently the most perfect thermal dissociation model as far as the exhaust composition is concerned; therefore, this might be regarded as the most general equation of AFR determination among the existing ones. The others might be considered as approximate form. In addition, the mal-distribution factor in Eltinge method is qualitatively equivalent to thermal dissociation chemical equilibrium constant K. Lastly, it is illustrated that all instrumentation error, including the sampling line leakage, can be easily detected through the analyzing the exhaust component on the Eltinge chart.

Performance Analysis of a Gas Turbine for Power Generation Using Syngas as a Fuel (Syngas를 연료로 사용하는 발전용 가스터빈의 성능해석)

  • Lee, Jong-Jun;Cha, Kyu-Sang;Sohn, Jeong-Lak;Joo, Yong-Jin;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.54-61
    • /
    • 2008
  • Integrated Gasification Combined Cycle (IGCC) power plant converts coal to syngas, which is mainly composed of hydrogen and carbon monoxide, by the gasification process and produces electric power by the gas and steam turbine combined cycle power plant. The purpose of this study is to investigate the influence of using syngas in a gas turbine, originally designed for natural gas fuel, on its performance. A commercial gas turbine is selected and variations of its performance characteristics due to adopting syngas is analyzed by simulating off-design gas turbine operation. Since the heating value of the syngas is lower, compared to natural gas, IGCC plants require much larger fuel flow rate. This increases the gas flow rate to the turbine and the pressure ratio, leading to far larger power output and higher thermal efficiency. Examination of using two different syngases reveals that the gas turbine performance varies much with the fuel composition.

A Study on Syngas Co-combustion Characteristics in a Heavy Oil Combustion System with Multi Burners (멀티 버너 중유 연소로에서의 합성 가스 혼합 연소 특성 연구)

  • Yang, Dong-Jin;Choi, Shin-Young;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.43-49
    • /
    • 2010
  • Co-combustion of syngas in an existing boiler can be one of the options for replacing conventional fossil fuel with alternative fuels such as waste and biomass. This study is aimed to investigate effects of syngas cocombustion on combustion characteristics and boiler efficiency. An experimental study was performed for a pilot-scale furnace with 4 oil burners. Tests were conducted with mixture-gas as a co-combustion fuel and heavy oil as a main fuel. The mixture-gas was composed of 15% CO, 7% $H_2$, 3% $CH_4$ and 75% $N_2$ for simulating syngas from air-blown gasification. And LHV of the mixture-gas was 890 kcal/$Nm^3$. Temperature distribution in the furnace and flue gas composition were measured for various heat replacement ratio by the mixture gas. Heat loss through the wall was also carried out through heat & mass balance calculation, in order to obtain informations related to boiler efficiency. Experimental results show that similar temperature distribution and flue gas composition can be obtained for the range of 0~20% heat replacement by syngas. NOx concentration is slightly decreased for higher heat replacement by the syngas because fuel NOx is decreased in the case. Meanwhile, heat loss is a bit decreased for higher heat replacement by the syngas, which implies that boiler efficiency can be a bit decreased when syngas co-combustion is applied to a boiler.