• 제목/요약/키워드: fuel cell efficiency

검색결과 630건 처리시간 0.036초

연료전지 분리판 압력손실 감소를 위한 수치해석 및 실험적 연구 (Numerical and Experimental Analysis of Pressure Drop in a Bipolar Plate channel of a Proton Exchange Membrane Fuel Cell)

  • 김희수;강경태;최윤기;이수동
    • 한국수소및신에너지학회논문집
    • /
    • 제15권2호
    • /
    • pp.159-165
    • /
    • 2004
  • Fuel cell makes electricity through chemical reaction. Bipolar-plate distribute hydrogen, oxidation using channel geometry condensation of water vapor inside channels of bipolar-plates lowers efficiency of fuel cell. Usually high pressured gas supply is used to solve the water condensation problem with serpentine type channel geometry. In this study, a new channel geometry shows feasible to minimize lowering efficiency due to water condensation through numerical and experimental analysis.

250kW급 MCFC 연료전지 시스템용 공기공급장치 개발 (Development of an Air Supply System in 250 kW MCFC Fuel Cell System)

  • 박준영;황순찬;박무룡;김영철;안국영
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.280-283
    • /
    • 2008
  • This study is concerned with development of air supply system in 250kW MCFC fuel cell system. The turbo blower is decided as an air supply system to increase the efficiency of fuel cell system. The turbo blower consists of an impeller, two vaneless diffuser, a vaned diffuser and a volute. The cascade diffuser is used to raise the efficiency of turbo blower. An aerodynamic design was done by applying the repeating design procedure including a meanline design, a 3D geometry generation and fluid dynamic calculation. It is confirmed from meanline and 3D flow analysis results that the operating range is enough and design requirements are successfully achieved. The performance test results were also included in this paper.

  • PDF

연료전지용 동기식 부스트 컨버터의 역전류 제어방식 (Reverse Current Control Method of Synchronous Boost Converter for Fuel Cell)

  • 김미지;신민호;최성촌;김지환;정용채;원충연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2013년도 전력전자학술대회 논문집
    • /
    • pp.411-412
    • /
    • 2013
  • This paper proposes the reverse current control method of synchronous boost converter for fuel cell. In order to implement a high efficiency charger with the synchronous boost converter, using MOSFETs instead of diodes is essential. Using the conventional boosting method, the reverse current is generated during transient state due to the nature of fuel-cell which needs soft starting depending on the amount of hydrogen. By using PWM control method, fuel-cell can be protected from being damaged by reverse current, so synchronous boosting method can be applied to charger applications. The experimental results are shown to verify that the implementation of high-efficiency converter is possible.

  • PDF

가스터빈/연료전지 혼합발전 시스템의 열교환기 설계 (Design of the recuperator for the gas turbine/fuel cell hybrid power generating system)

  • 곽재수;양수석;이대성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2105-2110
    • /
    • 2004
  • Plate-fin type recuperators for the gas turbine/fuel cell hybrid power generating system were designed using commercial design software, MUSE. Heat transfer efficiency and total pressure drop in the recuperator were calculated to confirm required recuperator performance. Both counter flow and cross flow type plate-fin recuperators were designed. Results show that the counter flow type has higher efficiency and short core length, but the cross flow type is simpler to construct because the cross flow type does not need additional distributors. Two or three headers for the each recuperator core will be designed and tested to evaluate best header design. The designed recuperators and headers which will be designed later will be constructed, tested, and used in gas turbine/fuel cell hybrid power generating system.

  • PDF

다중 동력 연료전지 하이브리드 장갑차량의 동력관리 전략에 관한 연구 (A Study on Power Management Strategy for Multi-Power Source Fuel Cell Hybrid Armored Vehicle)

  • 안상준;김태진;이교일
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.361-365
    • /
    • 2005
  • Since the fuel cell uses the hydrogen for its fuel. it has no emission and higher efficiency than an internal combustion engine. Also fuel cell is much quieter than engine generator and generates heat much less than engine generator. So it has advantage of Army's 'si lent watch' capability and the ability to operate undetected by the enemy. The fuel cell hybrid system combines a fuel cell power system with an ESS. The ESS (e.g., batteries or ultracapacitors) reduces the fuel cell's peak power and transient response requirements. It allows the fuel cell to operate more efficiently and recovery of vehicle energy during deceleration. The battery has high energy density, so it has the advantage regarding driving distance. However, it has a disadvantage considering dynamic characteristic because of low power density. One other hand. the ultracapacitor has higher power density, so it can handle sudden change or discharge of required power. Yet. it has lower energy density. so it will be bigger and heavier than the battery when it has the same energy. This paper proposes the power management strategy for multi-power source fuel cell hybrid system. which is applied with the merits of both battery and ultra capacitor by using both of them simultaneous.

  • PDF

20W급 휴대용 연료전지 시스템 설계 (System Design for 20W Portable Fuel Cell)

  • 지영석;고정식;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.161-165
    • /
    • 2007
  • Recently by the development of the electronic engineering technology various mobile devices are developed. But their operation time need to be extended although capacity of the batteries are limited. We focused our attention to the portable SOFC system. Because SOFC has the high efficiency and a lot of strongness in comparison with other kinds of fuel cells. In addition they can be built as a self/non-reformable system and single/dual chamber system. So We evaluated some types of SOFC theoretically, and compared the results from the fuel and performance efficiency point of view.

  • PDF

왕복유동을 이용한 확산증대 효과에 대한 연구 (Enhanced diffusion by using pulsating flow)

  • 황용신;이대영;김서영;최훈;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.538-541
    • /
    • 2008
  • This study considers the feasibility of the concentration control of the feul and air by oscillating flow in the channel of Fuel Cells. Fuel Cell Stack performance is largely influenced by the fuel and air concentration. If the fuel and air concentration is lower than stoichiometry 1.25 of the fuel and 2.5 of the air, its performance deteriorates seriously because of the fuel and air starvation. In this respect the optimization of the fuel and air concentration is crucially important to maximize fuel cell stack performance. In this work, the effects of oscillating actuation are studied to control the concentration. Two important nondimensional parameters are introduced, each of which represents either the oscillating frequency or the oscillating amplitude. It is shown how these factors affect the stack performance and the efficiency of the fuel cell stack stack.

  • PDF

소형 모듈 스택을 이용한 가정용 연료전지 성능의 실험적 고찰 (An Experimental Study of Short Stack on the Performance of the Proton Exchange Membrane Fuel Cell for the Residential Power generation)

  • 최원석;김용모;유상석;이영덕;홍동진;안국영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.21-24
    • /
    • 2008
  • Proton Exchange Membrane Fuel Cell (PEMFC) is an attractive candidate for residential power generator due to fast start-up and stop, high efficiency, low emission, and high power density. In this study, we employ short module stack to understand the performance of the unit cell of the stack in terms of operating temperatures. To simulate the practical fuel cell stack of residential power generator, the structure and active area of the short module stack is kept the same as that of the practical fuel cell. The results shows that the electric potential of short module stack is different from the number of cells times the potential of unit cell because of cell-to-cell variation.

  • PDF

150W급 휴대용 연료전지 Power Pack 설계 및 제작 (Design and Implementation of 150W Portable Fuel Cell Power Pack)

  • 우동균;주동명;김윤성;오재기;이병국
    • 전력전자학회논문지
    • /
    • 제17권6호
    • /
    • pp.553-561
    • /
    • 2012
  • Existing energy sources convert chemical energy into mechanical energy, while fuel cell directly generates electricity through an electrochemical reaction between hydrogen and oxygen. Therefore, it has a lot of strong points such as high efficiency, zero emission, and etc. In addition, with the development of hydrogen preservation technique, some companies have been researching and releasing portable fuel cell power packs for specific applications like military equipment, automobile, and so on. However, there are some drawbacks to the fuel cell, high cost and slow dynamic response. In order to compensate these weak points, auxiliary energy storages could be applied to the fuel cell system. In this paper, the optimum structure for a 150W portable fuel cell power pack with a battery pack is selected considering the specification of the system, and the design process of main parts is described in detail. Here, main objectives are compact size, simple control, high efficiency, and low cost. Then, an automatic mode change algorithm, which converts the operating mode depending on the states of fuel cell stack, battery pack, and load, is introduced. Finally, performance of the designed prototype using the automatic mode change control is verified through experiments.

모바일 연료전지용 초소형 수소 레귤레이터 (Small Hydrogen Regulator for Mobile Fuel Cells)

  • 김형진;서영호;김병희
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.129-132
    • /
    • 2011
  • This paper presents small hydrogen regulator for the mobile fuel cell. Mobile fuel cell is generally classified into open-end type and dead-end type. In the open-end type, flow rate of hydrogen is constantly controlled, while pressure of hydrogen is constantly maintained in the dead-end type. Considering the efficiency and stability of the fuel usage, dead-end type is more suitable with mobile fuel cell. Mobile fuel cell operated by dead-end mode requires hydrogen regulator which controls the hydrogen pressure from 0.1bar to 0.5bar within 3% error. In this paper, small hydrogen regulator (volume of 2.6cc) was fabricated by stainless steel. Regulation characteristics was experimentally evaluated.