• 제목/요약/키워드: fuel burnup

검색결과 252건 처리시간 0.022초

A simple method for estimating the major nuclide fractional fission rates within light water and advanced gas cooled reactors

  • Mills, R.W.;Slingsby, B.M.;Coleman, J.;Collins, R.;Holt, G.;Metelko, C.;Schnellbach, Y.
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2130-2137
    • /
    • 2020
  • The standard method for calculating anti-neutrino emissions from a reactor involves knowing the fractional fission rates for the most important fissioning nuclides in the reactor. To calculate these rates requires detailed reactor physics calculations based upon the reactor design, fuel design, burnup dependent fuel composition, location of specific fuel assemblies in the core and detailed operational data from the reactor. This has only been published for a few reactors during specific time periods, whereas to be of practical use for anti-neutrino reactor monitoring it is necessary to be able to predict these on the publicly available information from any reactor, especially if using these data to subtract the anti-neutrino signal from other reactors to identify an undeclared reactor and monitor its operation. This paper proposes a method to estimate the fission fractions for a specific reactor based upon publicly available information and provides a database based upon a series of spent fuel inventory calculations using the FISPIN10 code and its associated data libraries.

On the effect of temperature on the threshold stress intensity factor of delayed hydride cracking in light water reactor fuel cladding

  • Alvarez Holston, Anna-Maria;Stjarnsater, Johan
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.663-667
    • /
    • 2017
  • Delayed hydride cracking (DHC) was first observed in pressure tubes in Canadian CANDU reactors. In light water reactors, DHC was not observed until the late 1990s in high-burnup boiling water reactor (BWR) fuel cladding. In recent years, the focus on DHC has resurfaced in light of the increased interest in the cladding integrity during interim conditions. In principle, all spent fuel in the wet pools has sufficient hydrogen content for DHC to operate below $300^{\circ}C$. It is therefore of importance to establish the critical parameters for DHC to operate. This work studies the threshold stress intensity factor ($K_{IH}$) to initiate DHC as a function of temperature in Zry-4 for temperatures between $227^{\circ}C$ and $315^{\circ}C$. The experimental technique used in this study was the pin-loading testing technique. To determine the $K_{IH}$, an unloading method was used where the load was successively reduced in a stepwise manner until no cracking was observed during 24 hours. The results showed that there was moderate temperature behavior at lower temperatures. Around $300^{\circ}C$, there was a sharp increase in $K_{IH}$ indicating the upper temperature limit for DHC. The value for $K_{IH}$ at $227^{\circ}C$ was determined to be $2.6{\pm}0.3MPa$ ${\surd}$m.

Prediction of ballooning and burst for nuclear fuel cladding with anisotropic creep modeling during Loss of Coolant Accident (LOCA)

  • Kim, Jinsu;Yoon, Jeong Whan;Kim, Hyochan;Lee, Sung-Uk
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3379-3397
    • /
    • 2021
  • In this study, a multi-physics modeling method was developed to analyze a nuclear fuel rod's thermo-mechanical behavior especially for high temperature anisotropic creep deformation during ballooning and burst occurring in Loss of Coolant Accident (LOCA). Based on transient heat transfer and nonlinear mechanical analysis, the present work newly incorporated the nuclear fuel rod's special characteristics which include gap heat transfer, temperature and burnup dependent material properties, and especially for high temperature creep with material anisotropy. The proposed method was tested through various benchmark analyses and showed good agreements with analytical solutions. From the validation study with a cladding burst experiment which postulates the LOCA scenario, it was shown that the present development could predict the ballooning and burst behaviors accurately and showed the capability to predict anisotropic creep behavior during the LOCA. Moreover, in order to verify the anisotropic creep methodology proposed in this study, the comparison between modeling and experiment was made with isotropic material assumption. It was found that the present methodology with anisotropic creep could predict ballooning and burst more accurately and showed more realistic behavior of the cladding.

Development and verification of PWR core transient coupling calculation software

  • Li, Zhigang;An, Ping;Zhao, Wenbo;Liu, Wei;He, Tao;Lu, Wei;Li, Qing
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3653-3664
    • /
    • 2021
  • In PWR three-dimensional transient coupling calculation software CORCA-K, the nodal Green's function method and diagonal implicit Runge Kutta method are used to solve the spatiotemporal neutron dynamic diffusion equation, and the single-phase closed channel model and one-dimensional cylindrical heat conduction transient model are used to calculate the coolant temperature and fuel temperature. The LMW, NEACRP and PWR MOX/UO2 benchmarks and FangJiaShan (FJS) nuclear power plant (NPP) transient control rod move cases are used to verify the CORCA-K. The effects of burnup, fuel effective temperature and ejection rate on the control rod ejection process of PWR are analyzed. The conclusions are as follows: (1) core relative power and fuel Doppler temperature are in good agreement with the results of benchmark and ADPRES, and the deviation between with the reference results is within 3.0% in LMW and NEACRP benchmarks; 2) the variation trend of FJS NPP core transient parameters is consistent with the results of SMART and ADPRES. And the core relative power is in better agreement with the SMART when weighting coefficient is 0.7. Compared with SMART, the maximum deviation is -5.08% in the rod ejection condition and while -5.09% in the control rod complex movement condition.

LEU+ loaded APR1400 using accident tolerant fuel cladding for 24-month two-batch fuel management scheme

  • Husam Khalefih;Taesuk Oh;Yunseok Jeong;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2578-2590
    • /
    • 2023
  • In this work, a 24-month two-batch fuel management strategy for the APR1400 using LEU + has been investigated, where enrichments of 5.9 and 5.2 w/o are utilized in lieu of the conventional 4-5 w/o UO2 fuel. In addition, an Accident Tolerant Fuel (ATF) clad based on the swaging technology is applied to APR1400 fuel assemblies. In this special ATF clad design, both outer and inner SS316 layers protect the conventional zircaloy clad. Erbia (Er2O3) is introduced as a burnable absorber with two-fold goals to lower the critical boron concentration in the long-cycle LEU + loaded core as well as to handle the LEU + fuel in the existing front-end fuel facilities without renewing the license. Two types of fuel assemblies with different loading of gadolinia (Gd2O3) are considered to control both the reactivity and the core radial power distribution. The erbia burnable absorber is uniformly admixed with UO2 in all fuel pins except for the gadolinia-bearing ones. In this study, two core designs were devised with different erbia loading, and core performance and safety parameters were evaluated for each case in comparison with a core design without any burnable absorbers. The core analysis was done using the two-step method. First, cross-sections are generated by the SERPENT 2 Monte Carlo code, and the 3-D neutronic analysis is performed with an in-house multi-physics nodal code KANT.

THE EFFECTS OF CREEP AND HYDRIDE ON SPENT FUEL INTEGRITY DURING INTERIM DRY STORAGE

  • Kim, Hyun-Gil;Jeong, Yong-Hwan;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • 제42권3호
    • /
    • pp.249-258
    • /
    • 2010
  • Recently, many utilities have considered interim dry storage of spent nuclear fuel as an option for increasing spent fuel storage capacity. Foreign nuclear regulatory committees have provided some regulatory and licensing requirements for relatively low- and medium-burned spent fuel with respect to the prevention of spent fuel degradation during transportation and interim dry storage. In the present study, the effect of cladding creep and hydride distribution on spent fuel degradation is reviewed and performance tests with high-burned Zircaloy-4 and advanced Zr alloy spent fuel are proposed to investigate the effect of burnup and cladding materials on the current regulatory and licensing requirements. Creep tests were also performed to investigate the effect of temperature and tensile hoop stress on hydride reorientation and subsequently to examine the temperature and stress limits against cladding material failure. It is found that the spent fuel failure is mainly caused by cladding creep rupture combined with mechanical strength degradation and hydride reorientation. Hydride reorientation from the circumferential to radial direction may reduce the critical stress intensity that accelerates radial crack propagation. The results of cladding creep tests at $400^{\circ}C$ and 130MPa hoop stress performed in this study indicate that hydride reorientation may occur between 2.6% to 7.0% strain in tube diameter with a hydrogen content range of 40-120ppm. Therefore, it is concluded that hydride re-orientation behaviour is strongly correlated with the cladding creep-induced strain, which varies as functions of temperature and stress acting on the cladding.

CORE DESIGN FOR HETEROGENEOUS THORIUM FUEL ASSEMBLIES FOR PWR (II) - THERMAL HYDRAULIC ANALYSIS AND SPENT FUEL CHARACTERISTICS

  • BAE KANG-MOK;HAN KYU-HYUN;KIM MYUNG-HYUN;CHANG SOON-HEUNG
    • Nuclear Engineering and Technology
    • /
    • 제37권4호
    • /
    • pp.363-374
    • /
    • 2005
  • A heterogeneous thorium-based Kyung Hee Thorium Fuel (KTF) assembly design was assessed for application in the APR-1400 to study the feasibility of using thorium fuel in a conventional pressurized water reactor (PWR). Thermal hydraulic safety was examined for the thorium-based APR-1400 core, focusing on the Departure from Nucleate Boiling Ratio (DNBR) and Large Break Loss of Coolant Accident (LBLOCA) analysis. To satisfy the minimum DNBR (MDNBR) safety limit condition, MDNBR>1.3, a new grid design was adopted, that enabled grids in the seed and blanket assemblies to have different loss coefficients to the coolant flow. The fuel radius of the blanket was enlarged to increase the mass flow rate in the seed channel. Under transient conditions, the MDNBR values for the Beginning of Cycle (BOC), Middle of Cycle (MOC), and End of Cycle (EOC) were 1.367, 1.465, and 1.554, respectively, despite the high power tilt across the seed and blanket. Anticipated transient for the DNBR analysis were simulated at conditions of $112\%$ over-power, $95\%$ flow rate, and $2^{\circ}C$ higher inlet temperature. The maximum peak cladding temperature (PCT) was 1,173K for the severe accident condition of the LBLOCA, while the limit condition was 1,477K. The proliferation resistance potential of the thorium-based core was found to be much higher than that of the conventional $UO_2$ fuel core, $25\%$ larger in Bare Critical Mass (BCM), $60\%$ larger in Spontaneous Neutron Source (SNS), and $155\%$ larger in Thermal Generation (TG) rate; however, the radio-toxicity of the spent fuel was higher than that of $UO_2$ fuel, making it more environmentally unfriendly due to its high burnup rate.

Study of fission gas products effect on thermal hydraulics of the WWER1000 with enhanced subchannel method

  • Bahonar, Majid;Aghaie, Mahdi
    • Advances in Energy Research
    • /
    • 제5권2호
    • /
    • pp.91-105
    • /
    • 2017
  • Thermal hydraulic (TH) analysis of nuclear power reactors is utmost important. In this way, the numerical codes that preparing TH data in reactor core are essential. In this paper, a subchannel analysis of a Russian pressurized water reactor (WWER1000) core with enhanced numerical code is carried out. For this, in fluid domain, the mass, axial and lateral momentum and energy conservation equations for desired control volume are solved, numerically. In the solid domain, the cylindrical heat transfer equation for calculation of radial temperature profile in fuel, gap and clad with finite difference and finite element solvers are considered. The dependence of material properties to fuel burnup with Calza-Bini fuel-gap model is implemented. This model is coupled with Isotope Generation and Depletion Code (ORIGEN2.1). The possibility of central hole consideration in fuel pellet is another advantage of this work. In addition, subchannel to subchannel and subchannel to rod connection data in hexagonal fuel assembly geometry could be prepared, automatically. For a demonstration of code capability, the steady state TH analysis of a the WWER1000 core is compromised with Thermal-hydraulic analysis code (COBRA-EN). By thermal hydraulic parameters averaging Fuel Assembly-to-Fuel Assembly method, the one sixth (symmetry) of the Boushehr Nuclear Power Plant (BNPP) core with regular subchannels are modeled. Comparison between the results of the work and COBRA-EN demonstrates some advantages of the presented code. Using the code the thermal modeling of the fuel rods with considering the fission gas generation would be possible. In addition, this code is compatible with neutronic codes for coupling. This method is faster and more accurate for symmetrical simulation of the core with acceptable results.

CERAMOGRAPHY ANALYSIS OF MOX FUEL RODS AFTER AN IRRADIATION TEST

  • Kim, Han-Soo;Jong, Chang-Yong;Lee, Byung-Ho;Oh, Jae-Yong;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제42권5호
    • /
    • pp.576-581
    • /
    • 2010
  • KAERI (Korea Atomic Energy Research Institute) fabricated MOX (Mixed Oxide) fuel pellets as a cooperation project with PSI (Paul Scherrer Institut) for an irradiation test in the Halden reactor. The MOX pellets were fitted into fuel rods that included instrumentation for measurement in IFE (Institutt for Energiteknikk). The fuel rods were assembled into the test rig and irradiated in the Halden reactor up to 50 MWd/kgHM. The irradiated fuel rods were transported to the IFE, where ceramography was carried out. The fuel rods were cut transversely at the relatively higher burn-up locations and then the radial cross sections were observed. Micrographs were analyzed using an image analysis program and grain sizes along the radial direction were measured by the linear intercept method. Radial cracks in the irradiated MOX were observed that were generally circumferentially closed at the pellet periphery and open in the hot central region. A circumferential crack was formed along the boundary between the dark central and the outer regions. The inner surface of the cladding was covered with an oxide layer. Pu-rich spots were observed in the outer region of the fuel pellets. The spots were surrounded by many small pores and contained some big pores inside. Metallic fission product precipitates were observed mainly in the central region and in the inside of the Pu spots. The average areal fractions of the metallic precipitates at the radial cross section were 0.41% for rod 6 and 0.32% for rod 3. In the periphery, pore density smaller than 2 ${\mu}m$ was higher than that of the other regions. The grain growth occurred from 10 ${\mu}m$ to 12 ${\mu}m$ in the central region of rod 6 during irradiation.

가압경수로 사용후핵연료 이용확대 방안연구 (A Scheme of Better Utilization of PWR Spent Fuels)

  • Chung, B.J.;Kang, C.S.
    • Nuclear Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.165-173
    • /
    • 1991
  • 가압경수로의 사용후핵연료를 CANDU 원자로에 재순환시키는, 이른바, 탄뎀 핵연료주기가 본 연구에서 다루어졌다. 이러한 방식으로 가압경수로의 사용후핵연료를 활용하는 것은 우라늄자원의 이용을 개선시킬뿐만 아니라 사용후핵연료 저장능력의 부족도 다소 해결할 수 있을 것이다. 핵연료를 재순환 시키는데 있어서는 CANDU 원자로의 수정을 최소화하는 방향으로 연구가 진행되었으며 본 연구에서는 9종의 핵연료가 고려되었다. 탄뎀 핵연료는 크게 핵연료재가공과 노심재구성의 두 분야로 나뉘어지는데, 핵연료 재가공의 경우, 가압경수로의 사용후핵연료는 처리되고 현재의 37 봉형 격자구조인 핵연료 다발에 맞도록 다시 성형가공되며 노심재구성의 경우, 가압경수로 사용후핵연료는 단지 격자 구조를 해체하고 CANDU의 격자길이에 맞춰 재구성만 된다. 각 탄뎀 핵연료 옵션에 대하여, 허용연소도와 출력분포를 계산하기 위해 노심연소계산이 수행되었다. 또한 경제성에 대한 접근으로 각 핵연료 옵션에 대한 핵주기비가 계산되었다. 그 결과 본 연구에서 다루어진 대부분의 탄뎀 핵연료 옵션이 경제성이 있었을 뿐만 아니라 기술적인 타당성이 있었다.

  • PDF