• Title/Summary/Keyword: fuel alcohol

Search Result 120, Processing Time 0.029 seconds

Preparation and Characterization of PVA/PSSA-MA Electrolyte Membranes Containing Silica Compounds for Fuel Cell Application (실리카 화합물을 함유한 PVA/PSSA-MA 전해질 막의 제조 및 특성과 연료전지로의 응용)

  • Byun, Hong-Sik;Kim, Dae-Hoon;Lee, Byung-Seong;Lee, Bo-Sung;Yoon, Seok-Won;Rhim, Ji-Won
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.336-344
    • /
    • 2008
  • This manuscript deals with the investigation of the possibility of the crosslinked poly(vinyl alcohol) membranes with both poly(styrene sulfonic acid-co-maleic acid) and 3-(trihydroxysilyl)-1-propanesulfonic acid (THS-PSA) for the fuel cell application. The studies were focused on the characterization of the resulting membranes through water content, thermal gravimetric analysis, ion exchange capacity, ion conductivity and methanol permeability measurements and then compared with the existing Nafion membrane. Typically, the ion conductivity lied in the range of $10^{-3}$ to $10^{-2}\;S/cm$ while the methanol permeability showed the range of $10^{-6}$ to $10^{-8}\;cm^2/s$.

Operation Room Fire: Caution for Using Electrocautery after Rinsing Operation Field at the End of the Surgery with Alcohol-Based Cleansing Solutions (수술방 화재: 수술 종료 시 알코올 함유 피부 소독액을 이용한 수술부위 세척 이후 전기소작기 사용 주의)

  • Song, Jong Keun;Shin, Hyojeong;Lee, Jun Yong
    • Journal of the Korean Burn Society
    • /
    • v.22 no.2
    • /
    • pp.34-37
    • /
    • 2019
  • Fires in operating rooms rarely occur. However, this type of disaster can complicate almost any surgical procedure. Fuel, heat and oxygen are related with fire outbreak. When ignition sources such as alcohol-based surgical preparation solutions are present, the risk of an operating room fire increases, and burns are more severe in such conditions. Many manufacturers recommend waiting at least three minutes after application to allow complete drying for reduce fire risk. There are a few studies regarding flame burns in the operation room, although most of these studies are related to preoperative skin preparation. However, alcohol containing solutions can be used occasionally for cleansing of the operation field after the surgery, therefore, the surgical team should pay attention to surgical fires, even if they have completed the operation successfully. We present our case of a post-operative flame burn and introduce some precautions that will reduce the risk of alcohol burns.

Study on Conversion of Carbon Dioxide to Methyl Alcohol over Ceramic Monolith Supported CuO and ZnO Catalysts (세라믹 모노리스에 담지된 CuO와 ZnO계 촉매에 의한 이산화탄소의 메탄올로의 전환에 관한 연구)

  • Park, Chul-Min;Ahn, Won-Ju;Jo, Woong-Kyu;Song, Jin-Hun;Kim, Ki-Joong;Jeong, Woon-Jo;Sohn, Bo-Kyun;Ahn, Byeong Kwon;Chung, Min-Chul;Park, Kwon-Pil;Ahn, Ho-Geun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.97-104
    • /
    • 2013
  • Methyl alcohol is one of the basic intermediates in the chemical industry and is also being used as a fuel additive and as a clean burning fuel. In this study, conversion of carbon dioxide to methyl alcohol was investigated using catalytic chemical methods. Ceramic monoliths (M) with $400cell/in^2$ were used as catalyst supports. Monolith-supported CuO-ZnO catalysts were prepared by wash-coat method. The prepared catalysts were characterized by using ICP analysis, TEM images and XRD patterns. The catalytic activity for carbon dioxide hydrogenation to methyl alcohol was investigated using a flow-type reactor under various reaction temperature, pressure and contact time. In the preparation of monolith-supported CuO-ZnO catalysts by wash-coat method, proper concentration of precursors solution was 25.7% (w/v). The mixed crystal of CuO and ZnO was well supported on monolith. And it was known that more CuO component may be supported than ZnO component. Conversion of carbon dioxide was increased with increasing reaction temperature, but methyl alcohol selectivity was decreased. Optimum reaction temperature was about $250^{\circ}C$ under 20 atm because of the reverse water gas shift reaction. Maximum yield of methyl alcohol over CuO-ZnO/M catalyst was 5.1 mol% at $250^{\circ}C$ and 20 atm.

Proton Selectivity through Poly(vinyl alcohol) Based Polymer Electrolyte Membranes for Direct Methanol Fuel Cell

  • Higa, Mitsuru;Sugita, Mikinori;Maesowa, Shinichi;Hatemura, Kentaro;Endo, Nobutaka
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.270-270
    • /
    • 2006
  • We have prepared polymer electrolyte membranes (PEMs) for DMFC from polymer mixture of poly(vinyl alcohol) and poly(vinyl alcohol-co-2-acrylamido-2-methylpropane sulfonic acid) (AP-2) changing the AP-2 content. The proton conductivity(${\Box}$) and methanol permeability(P) of the PEMs increase with increasing AP-2 content because the water content of the PEMs increases with increasing AP-2 content. The proton permselectivity of the PEMs, which is defined as ${\Box}={\Box}/P$, indicates higher values than that of $Nafion{(R)}$117.

  • PDF

Thermal Characteristics of Sulgigemi Pellets Using Biomass (바이오매스를 이용한 술지게미 펠릿의 열적 특성)

  • Kim, Dae-Nyeon;Kim, Duk-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.108.1-108.1
    • /
    • 2011
  • This paper proposes the method to develop the fuel of suljigemi pellets using agricultural by-products the occurred during the manufacturing of alcohol. This paper is the goal to make sulgigemi pellet fuel for develops pellet of high calorie. The methods of sulgigemi pellet manufacturing well mix as the dough with the water and the sulgigemi. And then we have dried in the after compression and molding using well mixed the sulgigemi. The moisture of pellets has dried it removed until about 85%. Suljigemi pellet has the effect of zero emission as the soil conditioner using ash after burning. The merits for the sulgigemi pellet are the convenience of storage and custody. Also sulgigemi pellet has the reduction effect of carriage fee, fuel economy and low-cost high-efficiency effects, environmentally clean fuel as CO2 emissions savings. In experiment, we confirmed to calories of the wood pellet and the sulgigemi pellet. The calorie of the suljigemi pellets has high 233 kilo calories than the wood pellets. So the technologies of the sulgigemi fuel pellets are developing low carbon, green growth renewable energy fuel through futuristic energy system will be.

  • PDF

An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI (직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구)

  • Park, Gi-Young;Kang, Seok-Ho;Kim, In-Gu;Lim, Cheol-Soo;Kim, Jae-Man;Cho, Yong-Seok;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.

Characterization of PTFE Electrode Made by Bar-Coating Method Using Alcohol-Based Catalyst Slurry (알코올계 촉매 슬러리를 활용한 바 코팅으로 제조된 PTFE 전극의 형성 및 특성 조사)

  • JUNG, HYEON SEUNG;KIM, DO-HYUNG;PAK, CHANHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.3
    • /
    • pp.276-283
    • /
    • 2020
  • Alcohol-based solvents including ethanol (EtOH) and tert-butyl alcohol (TBA) are investigated instead of isopropanol (IPA), which is a common solvent for polytetrafluoroethylene (PTFE), as an alternative solvent for preparing the catalyst slurry with PTFE binder. As a result, the performance at 0.2 A/㎠ from the single cells from using catalyst slurries based on EtOH and TBA showed very similar value to that from the slurry using IPA, which implies the EtOH and TBA can be used as a solvent for the catalyst slurry. It is also confirmed by the very close values of the total resistance of the membrane electrode assemblies from the slurries using different solvents. In the energy dispersive spectrometry (EDS) image, the shape of crack and dispersion of PTFE are changed according to the vapor pressure of the solvent.

Preparation of Electrolyte Film for Solid Oxide Fuel Cells by Electrophoretic Deposition (전착법에 의한 음극지지형 SOFC 전해질막 제조)

  • 김상우;이병호;손용배;송휴섭
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.1
    • /
    • pp.23-29
    • /
    • 1999
  • An yttria-stabilized zirconia(YSZ) thin film on a porous NiO-YSZ substrate for an anode support type solid oxide fuel cell(SOFC) was prepared by an electrophoretic deposition(EPD). Deposition condition and film properties in order to obtain the homogeneous YSZ thin film from the EPD solution with different polarity were studied. In different case of alcohol solution, hydrogen gas was produced in aqueous solution from the electrolyte reaction under constant current above 0.138 mA /$\textrm{cm}^2$.Its reaction generated the bubble-formed defect in the deposited film and decreased weight of the film. The homogeneous YSZ thin film was formed in alcohol solution at a constant current, 0.035 mA /$\textrm{cm}^2$ for 10 s.

  • PDF