• Title/Summary/Keyword: fruiting habit

Search Result 13, Processing Time 0.016 seconds

Breeding of Self-compatible Pear "Wonkyo Na-jasoojung 2" (배 자가결실성 "원교 나-자수정 2호")

  • Shin, Il Sheob;Shin, Yong Uk;Hwang, Hae Sung;Heo, Seong;Kim, Ki Hong;Kang, Sam Seok;Kim, Yoon Kyeong
    • Korean Journal of Breeding Science
    • /
    • v.41 no.2
    • /
    • pp.154-157
    • /
    • 2009
  • Pear has a gametophytic self-incompatibility (SI) system and its SI reaction is controlled by a single multi-allelic S-locus. 'Wonkyo Na-jasoojung 2' was selected from a cross between 'Wonwhang', early season major pear cultivar with high fruit quality and self-incompatible, and 92-18-79 (${S_4}^{sm}{S_4}^{sm}$) obtained from self cross of 'Osa-nijisseiki' (${S_2S_4}^{sm}$) (SM, stylar-part mutant), self-compatible bud mutant that originated from self-incompatible 'Nijisseiki' ($S_2S_4$) made in 2001 at the National Institute of Horticultural and Herbal Science, Rural Development Administration in Korea. '92-18-79' was selected as a self-compatible source through field investigation. It bloomed 1 day earlier than 'Osa-Nijisseiki' and similar to 'Wonwhang' in 2008. It is medium in tree vigor and spreading in tree habit. 'Wonkyo Na-jasoojung 2' is classified as highly susceptible to pear scab (Venturia nashicola) similar to 'Osa-Nijisseiki' and as resistant to black spot (Alternaria kikuchiana) similar to 'Wonwhang'. It had 65.7% fruiting rate by self pollination. The average optimum harvest time of 'Wonkyo Na-jasoojung 2' was 148 days after full bloom and it matured 2 days earlier than 'Osa-Nijisseiki' and 11 days later than 'Wonwhang'. The fruit is roundish oblate in shape and yellowish brown in skin color. Average fruit weight was 445 g and soluble solids content was 13.3 $^{\circ}Brix$. The flesh had abundant juice and negligible grit.

Early Matured Pear Cultivar 'Supergold' with High Quality and Greenish-white Skin for Overseas Trade (조생종 고품질 녹백색 배 '슈퍼골드')

  • Kang, Sam-Seok;Kim, Yoon-Kyeong;Cho, Kwang-Sik;Jeong, Sang-Bouk;Hwang, Hea-Seong;Kim, Myung-Su;Shin, Il-Sheob;Shin, Yong-Uk;Won, Kyeong-Ho;Choi, Jang-Jeon
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.645-650
    • /
    • 2011
  • Pear cultivar 'Supergold' (Pyrus pyrifolia var. culta Nakai) was originated from the cross between 'Chuwhangbae' and 'Manpungbae' with the aims of improving the fruit quality of 'Chuwhangbae' cultivar at Pear Research Station of National Institute of Horticultural & Herbal Science, Rural Development Administration in 1994. 'Supergold' was preliminarily selected in 2002 and named in 2008. The tree shows a vigorous growth habit and semi-spread characters like as 'Manpungbae'. Furthermore, it has sufficient flowers and carries abundant pollen grains, so it can also be used as a pollinator. 'Supergold' is highly resistant to black leaf spot (Alternaria kikuchiana) in the field condition. The optimum harvest time is around Sep. 11th, which is ahead of 'Whangkeumbae' about 5 days in the harvest period. The fruit shape is oblate and fruit skin color is greenish-white at harvesting time. The average weight of fruit is 570 g, and the soluble solids content is $13.6\;^{\circ}Brix$. The flesh is very soft and juicy, and renders good eating quality. Shelf life is about 6 months under the cold storage condition. To determine the self-incompatibility (SI) genotype of 'Supergold' pear cultivar, it was crossed with other cultivars of which SI genotypes have already known. The result of cross-pollinations of 'Supergold' with other cultivars showed relatively high rates of fruit set from 64.5% to 91.0%, except for the cross with pollens of 'Nijisseiki' that represented only 28.8% of fruiting rate. Although sometimes the stigma of 'Supergold' crossed with 'Hayatama', 'Chojuro', and 'Nijisseiki' showed malformed pollen tube tips, 'Supergold' is generally supposed to have cross-compatibility with all other pollen donor cultivars. It is considered that the S-allele of 'Supergold' is $S_3S_4$, which is based on the result of PCR-RFLP.

Studies on the selection in soybean breeding. -II. Additional data on heritability, genotypic correlation and selection index- (대두육종에 있어서의 선발에 관한 실험적연구 -속보 : 유전력ㆍ유전상관, 그리고 선발지수의 재검토-)

  • Kwon-Yawl Chang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.89-98
    • /
    • 1965
  • The experimental studies were intended to clarify the effects of selection, and also aimed at estimating the heritabilities, the genotypic correlations among some agronomic characters, and at calculating the selection index on some selective characters for the selection of desirable lines, under different climatic conditions. Finally practical implications of these studies, especially on the selection index, were discussed. Twenty-two varieties, determinate growing habit type, were selected at random from the 138 soybean varieties cultivated the year before, were grown in a randomized block design with three replicates at Chinju, Korea, under May and June sowing conditions. The method of estimating heritabilities for the eleven agronomic characters-flowering date, maturity date, stem length, branch numbers per plant, stem diameter, plant weight, pod numbers per plant, grain numbers per plant and 100 grain weight, shown in Table 3, was the variance components procedures in a replicated trial for the varieties. The analysis of covariance was used to obtain the genotypic correlations and phenotypic correlations among the eight characters, and the selection indexes for some agronomic characters were calculated by Robinson's method. The results are summarized as follows: Heritabilities : The experiment on the genotype-environment interaction revealed that in almost all of the characters investigated the interaction was too large to be neglected and materially affected the estimates of various genotypic parameters. The variation in heritability due to the change of environments was larger in the characters of low heritability than in those of high heritability. Heritability values of flowering date, fruiting period (days from flowering to maturity), stem length and 100 grain weight were the highest in both environments, those of yield(grain weight) and other characters were showed the lower values(Table 3). These heritability values showed a decreasing trend with the delayed sowing in the experiments. Further, all calculated heritability values were higher than anticipated. This was expected since these values, which were the broad sense heritability, contain the variance due to dominance and epistasisf in addition to the additive genetic variance. Genotypic correlations : Genotypic correlations were slightly higher than the corresponding phenotypic correlations in both environments, but the variation in values due to the change of environment appeared between grain weight and some other characters, especially an increase between grain weight and flowering date, and the total growing period(Table 6). Genotypic correlations between grain weight and other characters indicated that high seed yield was genetically correlated with late flowering, late maturity, and the other five characters namely branch numbers per plant, stem diameter, plant weight, pod numbers per plant and grain numbers per plant, but not with 100 grain weight of soybeans. Pod numbers and grain numbers per plant were more closely correlated with seed yields than with other characters. Selection index : For the comparison and the use of selection indexes in the selection, two kinds of selection indexes were calculated, the former was called selection index A and the later selection index B as shown in Table 7. Selection index A was calculated by the values of grain weight per plant as the character of yield(character Y), but the other, selection index B, was calculated by the values of pod numbers per plant, instead of grain weight per plant, as the character of yield'(character Y'). These results suggest that selection index technique is useful in soybean breeding. In reality, however, as the selection index varies with population and environment, it must be calculated in each population to which selection is applied and in each environment in which the population is located. In spite of the expected usefulness of selection index technique in soybean breeding, unsolved problems such as the expense, time and labor involved in calculating the selection index remain. For these reasons and from these experimental studies, it was recognized that in the breeding of self-fertilized soybean plants the selection for yield should be based on a more simple selection index such as selection index B of these experiments rather than on the complex selection index such as selection index A. Furthermore, it was realized that the selection index for the selection should be calculated on the basis of the data of some 3-4 agronomic characters-maturity date(X$_1$), branch numbers per plant(X$_2$), stem diameter(X$_3$) and pod numbers per plant etc. It must be noted that it should be successful in selection to select for maturity date(X$_1$) which has high heritability, and the selection index should be calculated easily on the basis of the data of branch numbers per plant(X$_2$), stem diameter(X$_3$) and pod numbers per plant, directly after the harvest before drying and threshing. These characters should be very useful agronomic characters in the selection of Korean soybeans, determinate growing habit type, as they could be measured or counted easily thus saving time and expense in the duration from harvest to drying and threshing, and are affected more in soybean yields than the other agronomic characters.

  • PDF