• Title/Summary/Keyword: front tracking

Search Result 146, Processing Time 0.022 seconds

Interaction between Coastal Debris and Vegetation Zone Line at a Natural Beach (자연 해안표착물과 배후 식생대 전선의 상호 작용에 관한 연구)

  • Yoon, Han Sam;Yoo, Chang Ill
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.224-235
    • /
    • 2014
  • Changes in the interactions among incident ocean water waves, coastal debris (marine debris), and the back vegetation zone line on a natural sandy beach on the island of Jinu-do in the Nakdong river estuary were investigated. The study involved a cross-sectional field survey of the beach, numerical modeling of incident ocean water waves, field observations of the distribution of coastal debris, and vegetation zone line tracking using GPS. The conclusions of this study can be summarized as follows: (1) The ground level of the swash zone (sandy beach) on Jinu-do is rising, and the vegetation zone line, which is the boundary of the coastal sand dunes, shows a tendency to move forward toward the open sea. The vegetation zone line is developing particularly strongly in the offshore direction in areas where the ground level is elevated by more than 1.5 m. (2) The spatial distributions of incident waves differed due to variations in the water depth at the front of the beach, and the wave run-up in the swash zone also displayed complex spatial variations. With a large wave run-up, coastal debris may reach the vegetation zone line, but if the run-up is smaller, coastal debris is more likely to deposit in the form of an independent island on the beach. The deposited coastal debris can then become a factor determining which vegetation zone line advances or retreats. Finally, based on the results of this investigation, a schematic concept of the mechanisms of interaction between the coastal debris and the coastal vegetation zone line due to wave action was derived.

A Study on Automatic Correction Method of Electronic Compass Deviation Using the Geostationary Satellite Azimuth Information (정지위성 방위각 정보를 활용한 전자 컴퍼스 편차 자동보정기법 연구)

  • Lee, Jae-Won;Lee, Geon-Ho
    • Journal of Navigation and Port Research
    • /
    • v.41 no.4
    • /
    • pp.189-194
    • /
    • 2017
  • The Moving Search Radar System (MSRS) monitors sea areas by moving along the coast. Since the radar is initially aligned to the front of the vehicle, it is important to know the changes in the heading azimuth of the vehicle to quickly acquire the target azimuth from the radar after the MSRS has moved. The heading azimuth can be obtained using the gyro compass, the GPS compass or the electronic compass. The electronic compass is suitable for MSRS requiring fast maneuverability due to its small volume, short stabilization time and low price. However, using a geomagnetic sensor may result in an error due to the surrounding magnetic field. Errors can make early automatic tracking of the satellites difficult and can reduce the radar detection accuracy. Therefore, this paper proposes a method to automatically compensate for the error reflecting the correction value on the radar obtained by comparing the reference azimuth calculated by solving the geodesic inverse problem using two coordinates between the radar and the geostationary satellite with the actually-directed azimuth angle of the satellite antenna. The feasibility and convenience of the proposed method were verified by applying it to the MSRS in the field.

Development of LiDAR-Based MRM Algorithm for LKS System (LKS 시스템을 위한 라이다 기반 MRM 알고리즘 개발)

  • Son, Weon Il;Oh, Tae Young;Park, Kihong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.174-192
    • /
    • 2021
  • The LIDAR sensor, which provides higher cognitive performance than cameras and radar, is difficult to apply to ADAS or autonomous driving because of its high price. On the other hand, as the price is decreasing rapidly, expectations are rising to improve existing autonomous driving functions by taking advantage of the LIDAR sensor. In level 3 autonomous vehicles, when a dangerous situation in the cognitive module occurs due to a sensor defect or sensor limit, the driver must take control of the vehicle for manual driving. If the driver does not respond to the request, the system must automatically kick in and implement a minimum risk maneuver to maintain the risk within a tolerable level. In this study, based on this background, a LIDAR-based LKS MRM algorithm was developed for the case when the normal operation of LKS was not possible due to troubles in the cognitive system. From point cloud data collected by LIDAR, the algorithm generates the trajectory of the vehicle in front through object clustering and converts it to the target waypoints of its own. Hence, if the camera-based LKS is not operating normally, LIDAR-based path tracking control is performed as MRM. The HAZOP method was used to identify the risk sources in the LKS cognitive systems. B, and based on this, test scenarios were derived and used in the validation process by simulation. The simulation results indicated that the LIDAR-based LKS MRM algorithm of this study prevents lane departure in dangerous situations caused by various problems or difficulties in the LKS cognitive systems and could prevent possible traffic accidents.

Experience Design Guideline for Smart Car Interface (스마트카의 인터페이스를 위한 경험 디자인 가이드라인)

  • Yoo, Hoon Sik;Ju, Da Young
    • Design Convergence Study
    • /
    • v.15 no.1
    • /
    • pp.135-150
    • /
    • 2016
  • Due to the development of communication technology and expansion of Intelligent Transport System (ITS), the car is changing from a simple mechanical device to second living space which has comprehensive convenience function and is evolved into the platform which is playing as an interface for this role. As the interface area to provide various information to the passenger is being expanded, the research importance about smart car based user experience is rising. This study has a research objective to propose the guidelines regarding the smart car user experience elements. In order to conduct this study, smart car user experience elements were defined as function, interaction, and surface and through the discussions of UX/UI experts, 8 representative techniques, 14 representative techniques, and 8 locations of the glass windows were specified for each element. Following, the smart car users' priorities of the experience elements, which were defined through targeting 100 drivers, were analyzed in the form of questionnaire survey. The analysis showed that the users' priorities in applying the main techniques were in the order of safety, distance, and sensibility. The priorities of the production method were in the order of voice recognition, touch, gesture, physical button, and eye tracking. Furthermore, regarding the glass window locations, users prioritized the front of the driver's seat to the back. According to the demographic analysis on gender, there were no significant differences except for two functions. Therefore this showed that the guidelines of male and female can be commonly applied. Through user requirement analysis about individual elements, this study provides the guides about the requirement in each element to be applied to commercialized product with priority.

Impact of the Physical Characteristics of Smart Wristbands and Smartwatches on Perceived Functional, Aesthetic, And Symbolic Values (스마트팔찌와 스마트워치의 물리적 특성이 지각된 기능적, 심미적, 상징적 가치에 미치는 영향)

  • Soo In Shim;Heejeong Yu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.525-532
    • /
    • 2024
  • This study explores the impact of physical characteristics (e.g., shape, color, material, size, weight, technical features) of smart wristbands and smartwatches on consumers' perceived functional, aesthetic, and symbolic values using an extended technology acceptance model. An online survey was conducted with adult residents of the United States who had experience using smart wristbands or smartwatches. Participants were asked about various physical characteristics of products they had used in the past year or were currently using, and their evaluations of these characteristics. The results revealed that the shape of the front display shape significantly influenced symbolic value, with circle shape and square shpae showing significantly higher symbolic value than rectangle shape. Wristband materials also had a significant impact on symbolic value, with metal and leather showing higher symbolic value among various materials. Additionally, an increase in product size was associated with higher symbolic value. Moreover, certain technical features such as activity tracker, alarm clock, and distance tracking influenced perceived functional value, while functions like time display, GPS, and email influenced perceived aesthetic value. Pedometer, GPS, and email were found to enhance perceived symbolic value. These findings provide valuable insights into consumer preferences for smart wristbands and smartwatches, serving as valuable information for product improvement and new product development.

Usefulness of Breast Lymphoscintigraphy after Whole Body Bone Scan (유방암 환자에서 전신 뼈 검사 후 감시림프절 위치 파악 검사의 유용성)

  • Jang, Dong-Gun;Bahn, Young-Kag;Chung, Seok;Park, Hoon-Hee;Kang, Chun-Goo;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.133-137
    • /
    • 2010
  • Purpose: Breast cancer is known to be more vulnerable to bone metastasis and lymph node metastasis than other types of cancer, and nuclear examinations whole body bone scan and lymphoscintigraphy are performed commonly before and after breast cancer operation. In case whole body bone scan is performed on the day before lymphoscintigraphy, the radiopharmaceutical taken into and remaining in the bones provides anatomical information for tracking and locating sentinel lymph nodes. Thus, this study purposed to examine how much bone density affects in locating sentinel lymph nodes. Materials and Methods: The subjects of this study were 22 patients (average age $52{\pm}7.2$) who had whole body bone scan and lymphoscintigraphy over two days in our hospital during the period from January to December, 2009. In the blind test, 22 patients (average age $57{\pm}6.5$) who had lymphoscintigraphy using $^{57}Co$ flood phantom were used as a control group. In quantitative analysis, the relative ratio of the background to sentinel lymph nodes was measured by drawing ROIs on sentinel lymph nodes and the background, and in gross examination, each of a nuclear physician and a radiological technologist with five years' or longer field experience examined images through blind test in a five-point scale. Results: In the results of quantitative analysis, the relative ratio of the background to sentinel lymph nodes was 14.2:1 maximum and 8.5:1 ($SD{\pm}3.48$) on the average on the front, and 14.7:1 maximum and 8.5:1 ($SD{\pm}3.42$) on the average on the side. In the results of gross examination, when $^{57}Co$ flood phantom images were compared with images containing bones, the score was relative high as 3.86 ($SD{\pm}0.35$) point for $^{57}Co$ flood phantom images and 4.09 ($SD{\pm}0.42$) for bone images. Conclusion: When whole body bone scan was performed on the day before lymphoscintigraphy, the ratio of the background to sentinel lymph nodes was over 10:1, so there was no problem in locating lymph nodes. In addition, we expect to reduce examination procedures and improve the quality of images by indicating the location of sentinel lymph nodes using bone images as body contour without the use of a source.

  • PDF