• Title/Summary/Keyword: front pressure effect

Search Result 166, Processing Time 0.028 seconds

Influence of Wave Chamber Slab on Wave Pressure on First and Second Wall of Perforated Caisson Breakwater (유수실 상부 덮개가 유공 케이슨 방파제의 전면벽 및 후면벽 파압에 미치는 영향)

  • Oh, Sang-Ho;Ji, Chang-Hwan;Oh, Young-Min;Jang, Se-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2317-2328
    • /
    • 2013
  • In this study, the effect of wave chamber slab on wave pressure along the first and second wall of the perforated caisson breakwater was investigated by performing physical experiment. The experiment was performed without and with the wave chamber slab of the perforated caisson by varying the front wall porosity. The discrepancy in magnitudes of the measured wave pressure along the both walls of the perforated caisson was apparent according to the existence of the wave chamber slab as significantly greater pressures were acquired for all the test cases when the wave chamber was closed upward by the slab. As a result, the magnitudes of the total wave force calculated by integration of the measured wave pressure also were much larger for the caisson breakwater having the wave chamber slab, exceeding the value based on the well known Takahashi's formula (Takahashi and Shimosako, 1994). With respect to the porosity of the front wall, meanwhile, higher pressures were obtained with a larger porosity, at both the first and second wall of the breakwater.

A Numerical Study on the Drag of Axial Cylinder (종축 실린더의 항력에 대한 수치 해석적 연구)

  • Lee, Hyun-Bae;Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.512-520
    • /
    • 2012
  • In this study, the numerical analysis for the flows around an axial cylinder is carried out in order to investigate the basic characteristics of drag of blunt body. A variation of drag and flow separation for the axial cylinder is investigated according to the length-diameter ratio. Also, the flow separation around the head is removed by rounding-off the front edge of the body to analyze the effect of drag reduction. Most of the drag turns out to be a pressure drag component and the variation of drag is caused by the change of pressure and velocity which is affected strongly by the flow separation at the edges of the axial cylinder. Especially, it is found that the pressure drag component acting on the back of axial cylinder, as known as the base drag, mainly changes the drag. As the length-diameter ratio of axial cylinder increases, the drag sharply decreases and the minimum is shown when the length-diameter ratio is about 2.4. Also, as the length-diameter ratio increases further above 2.4, the drag increases at a slower rate. The pressure drag is almost constant when the length-diameter ratio is greater than 8, but the increase of friction drag component is the reason for the increase of the drag. When flow separation is removed completely at the front edge of the axial cylinder, the pressure drag component is reduced to 12~17%, but the total drag is reduced to only 17%~32% due to the friction drag component that increases linearly proportional to the length-diameter ratio.

A Polysilicon Field Effect Transistor Pressure Sensor of Thin Nitride Membrane Choking Effect of Right After Turn-on for Stress Sensitivity Improvement (스트레스 감도 향상을 위한 턴 온 직후의 조름 효과를 이용한 얇은 질화막 폴리실리콘 전계 효과 트랜지스터 압력센서)

  • Jung, Hanyung;Lee, Junghoon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.114-121
    • /
    • 2014
  • We report a polysilicon active area membrane field effect transistor (PSAFET) pressure sensor for low stress deflection of membrane. The PSAFET was produced in conventional FET semiconductor fabrication and backside wet etching. The PSAFET located at the front side measured pressure change using 300 nm thin-nitride membrane when a membrane was slightly strained by the small deflection of membrane shape from backside with any physical force. The PSAFET showed high sensitivity around threshold voltage, because threshold voltage variation was composed of fractional function form in sensitivity equation of current variation. When gate voltage was biased close to threshold voltage, a fractional function form had infinite value at $V_{tn}$, which increased the current variation of sensitivity. Threshold voltage effect was dominant right after the PSAFET was turned on. Narrow transistor channel established by small current flow was choked because electron could barely cross drain-source electrodes. When gate voltage was far from threshold voltage, threshold voltage effect converged to zero in fractional form of threshold voltage variations and drain current change was mostly determined by mobility changes. As the PSAFET fabrication was compatible with a polysilicon FET in CMOS fabrication, it could be adapted in low pressure sensor and bio molecular sensor.

The Whole Region Pressure Measurement of Cavity Downstream using PSP Technique (PSP를 이용한 Cavity 후류의 전역적 압력분포 측정)

  • Kim, Ki-Su;Jeon, Young-Jin;Seo, Hyung-Seok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.317-321
    • /
    • 2007
  • PSP (Pressure Sensitive Paint) technique can measure continuous pressure field by analyzing the oxygen quantity using optical method. The surface pressure of down stream after the sonic jet that injected transversely into the supersonic freestream was measured by PSP technique. Moreover the effect of various rectangular shaped cavities in front of the jet was measured by PSP technique. A comparison of the PSP results with conventional pressure tap and CFD indicates good agreement. The result shows that the cavity affects the pressure distribution in the rear of the jet injection.

  • PDF

Effects of Swirl on Flame Development and Late Combustion Characteristic in a High Speed Single-Shot Visualized SI Engine (고속 단발 가시화 스파크 점화 엔진에서의 연소 특성에 대한 선회효과 연구)

  • Kim, S.S.;Kim, S.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.54-64
    • /
    • 1995
  • The effects of swirl on early flame development and late combustion characteristic were investigated using a high speed single-shot visualized 51 engine. LDV measurements were performed to get better understanding of the flow field in this combustion chamber. Spark plugs were located at half radius (R/2) and central location of bore. High speed schlieren photographs at 20,000 frames/sec were taken to visualize the detailed formation and development of the flame kernel with cylinder pressure measurements. This study showed that high swirl gave favorable effects on combustion-related performances in terms of the maximum cylinder pressure and flame growth rate regardless of spark position. However, at R/2 ignition the low swirl shown desirable effects at low engine speed gave worse performances as engine speed increased than without swirl. There were distinct signs of slow-down in flame growth during the period when the flame front expanded from 2.5mm in radius until it reached 5.0mm apparently due to the presence of ground electrode. There seemed to be heat transfer effect on the flame expansion speed which was evidenced in high swirl case by the slowdown of the late flame front presumably caused by relatively large heat loss from burned gas to wall compared with low- or no-swirl cases.

  • PDF

Passive control of unsteady compression wave using vertical bleed ducts (수직갱을 이용한 터널내 비정상 압축파의 피동제어)

  • Kim, Hui-Dong;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1095-1104
    • /
    • 1997
  • When a high-speed railway train enters a tunnel, a compression wave is generated ahead of the train and propagates along the tunnel, compressing and accelerating the rest air in front of the wave. At the exit of the tunnel, an impulsive wave is emitted outward toward the surrounding, which causes a positive impulsive noise like a kind of sonic boom produced by a supersonic aircraft. With the advent of high-speed train, such an impulsive noise can be large enough to cause the noise problem, unless some attempts are made to alleviate its pressure levels. For the purpose of the impulsive noise reduction, the present study investigated the effect of a vertical bleed duct on the compression wave propagating into a model tunnel. Numerical results were obtained using a Piecewise Linear Method and testified by experiment of shock tube with an open end. The results showed that the vertical bleed duct reduces the maximum pressure gradient of compression wave front by about 30 percent, compared with the straight tunnel without the bleed duct. As the width of the vertical bleed duct becomes larger, reduction of the impulsive noise is expected to be greater. However the impulsive noise is independent of the height of the vertical bleed duct.

Effect of Pitch Angle and Blade Length on an Axial Flow Fan Performance (피치각과 날개 길이에 따른 축류팬의 성능)

  • Jeon, Sung-Taek;Cho, Jin-Pyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • In this study, the performance of an impeller according to blade length and pitch angle was studied experimentally by building a variable pitch impeller while changing blade length to review the effect of blade length and pitch angle on a fan's performance. The pitch angle was changed in six steps from $20^{\circ}{\sim}45^{\circ}$ at intervals of $5^{\circ}$ while the blade lengths were changed to 90 mm, 100 mm, 110 mm and 120 mm with an identical airfoil shape while carrying out the experiment. The results are summarized as follows: The air flow per static pressure of axial fans increased linearly with increase of pitch angle, but the high static pressure showed a decrease at a pitch angle of $35^{\circ}$. The shaft power increased proportionally to the pitch angle at all blade lengths; the larger the pitch angle, the larger the measured increase of shaft power. This is because the drag at the fan's front increases with the pitch angle. In the axial fans considered in this research, the flow and increase of static pressure amount increased up to a pitch angle of $30^{\circ}$ but decreased rapidly above $35^{\circ}$.

Sensitivity of Hot Film Flow Meter in Four Stroke Gasoline Engine

  • Lee, Gangyoung;Lee, Cha--Myung;Park, Simsoo;Youngjin Cho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.286-293
    • /
    • 2004
  • The air fuel ratios of current gasoline engines are almost controlled by several air flow meters. When CVVT (Continuous Variable Valve Timing) is applied to a gasoline engine for higher engine performance, the MAP (Manifold Absolute Pressure) sensor is difficult to follow the instantaneous air fuel ratio due to the valve timing effect. Therefore, a HFM (Hot Film Flow Meter) is widely used for measuring intake air flow in this case. However, the HFMs are incapable of indicating to reverse flow, the oscillation of intake air flow has an negative effect on the precision of the HFM. Consequently, the various duct configurations in front of the air flow sensor affect the precision of HFM sensitivity. This paper mainly focused on the analysis of the reverse flow, flow fluctuation in throttle upstream and the geometry of intake system which influence the HFM measurement.

Effect of a frontal impermeable layer on the excess slurry pressure during the shield tunnelling in the saturated sand (포화 사질토에서 전방 차수층이 쉴드터널 초과 이수압에 미치는영향)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.347-370
    • /
    • 2011
  • Slurry type shield would be very effective for the tunnelling in a sandy ground, when the slurry pressure would be properly adjusted. Low slurry pressure could cause a tunnel face failure or a ground settlement in front of the tunnel face. Thus, the stability of tunnel face could be maintained by applying an excess slurry pressure that is larger than the active earth pressure. However, the slurry pressure should increase properly because an excessively high slurry pressure could cause the slurry flow out or the passive failure of the frontal ground. It is possible to apply the high slurry pressure without passive failure if a horizontal impermeable layer is located in the ground in front of the tunnel face, but its location, size, and effects are not clearly known yet. In this research, two-dimensional model tests were carried out in order to find out the effect of a horizontal impermeable layer for the slurry shield tunnelling in a saturated sandy ground. In tests slurry pressure was increased until the slurry flowed out of the ground surface or the ground fails. Location and dimension of the impermeable layer were varied. As results, the maximum and the excess slurry pressure in sandy ground were linearly proportional to the cover depth. Larger slurry pressure could be applied to increase the stability of the tunnel face when the impermeable layer was located in the ground above the crown in front of the tunnel face. The most effective length of the impermeable grouting layer was 1.0 ~ 1.5D, and the location was 1.0D above the crown level. The safety factor could be suggested as the ratio of the maximum slurry pressure to the active earth pressure at the tunnel face. It could also be suggested that the slurry pressure in the magnitude of 3.5 ~4.0 times larger than the active earth pressure at the initial tunnel face could be applied if the impermeable layer was constructed at the optimal location.

Kinetic Theory Analysis for Thin-Film Bearings (기체분자운동론을 이용한 박막 베어링 해석)

  • Chung Chan Hong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.162-170
    • /
    • 2004
  • A kinetic theory analysis is used to study the ultra-thin gas flow field in gas slider hearings. The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. Calculations are made for the flow field inside stepped and straight slider bearings. The results are compared well with those from the DSMC method. Special attention has been paid to the effect of the pressure build-up in front of a hearing, which has never been assessed before. It has been shown that the pressure build-up at the inlet is about $4.5\%$ of the operating pressure and the resulting load capacity is about $25\%$ higher for the case considered in the present study.

  • PDF