• Title/Summary/Keyword: front electrodes

Search Result 68, Processing Time 0.03 seconds

Improvement of luminous efficiency through new cell structure and driving pulse

  • Ko, Sang-Woo;Yang, Sung-Soo;Kim, Hyun-Chul;Mukherjee, Sudeshna;Lee, Jae-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.714-717
    • /
    • 2003
  • We have suggested several plasma display panel (PDP) cell structures for high luminance and low power consumption by our two-and three-dimensional fluid simulation codes. Generally, to improve luminous efficiency and discharge efficiency, it is known that it is lucrative to use long discharge path and to form low electric field. However, the problems are how to implement them effectively in the small PDP cell. Therefore, unlike conventional model, we suggest Front Three Electrodes (FTE) model. In this model, we tried to make long and V-shaped discharge path by geometry changes and driving pulse variations. Consequently, from our simulation results based on the model above, luminous efficiency has improved about 2.6 times.

  • PDF

Development of low power type sensor for the DO concentration measurement by clark electrode (Clark전극에 의한 DO 농도측정을 위한 절전형 센서개발에 관한 연구)

  • 이동희
    • Electrical & Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.254-260
    • /
    • 1995
  • A method is described for the design and fabrication of the sensor interface circuits on the Clark electrodes for the dissolved oxygen(DO). The discussion includes a method for the +5 V single-supply driving for the sensor circuits, which has low power comsumption for the front-end electronics. DO probe under test is composed of the Clark electrode with silver anode, gold cathode and the electrolyte of half saturated KCI solution and the FEP teflon memtrance for the oxygen penetration. Typical polarograms for the DO probes by using this sensor circuit reveals high accuracy over 99% of the I to V conversion. Partial pressure of oxygen obtained from the polarograms are well suited to the results calculated. It is expected that the proposed sensor circuits can be utilized into the customized IC for the battery-driven small-size DO meters.

  • PDF

A Method on the design of the Sensor Circuits for the polarographic Oxygen Probes (Polarographic 산소전극용 센서회로 설계에 대한 일 방안)

  • Rhie, Dong-Hee;Choi, Bok-Gil;Kim, Nam-Jeong;Kang, Mun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1286-1288
    • /
    • 1994
  • Methods are described for the design and fabrication of the sensor circuits on the polarographic oxygen sensing electrodes. The discussion includes: a method for the +5V single-supply driving for the sensor circuits, a method of low power comsumption for the front-end electronics. Typical polarograms for the commercial DO probes using this sensor circuits are presented. High accuracy of the I to V conversion using the circuits is verified.

  • PDF

A Study on Rheology Characteristics of Ag Paste for Screen Printing Method for Silicon Solar Cells Electrodes Capable of Forming High Aspect Ratio (고온 소결형 실리콘 태양 전지의 High Aspect Ratio 전극 형성이 가능한 Ag 페이스트의 레오로지 특성 연구)

  • Oh, Tae-Hun;Kim, Sung-Bin;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.1
    • /
    • pp.15-24
    • /
    • 2010
  • Photovoltaic solar cells are all in the incident because they are not converted into electrical energy, high-efficiency solar cells in order to reduce the loss of elements must be. Significant factor in the loss of solar cells, optical loss and electrical loss can be divided into. Optical losses occur when the sun will be joined on the surface of the reflection, the shadow loss due to electrodes, and the losses are in the solar wavelengths. Commercialization is currently the most common solar cells on the front of the light incident on the electrode is formed. Therefore, the shadow caused by the electrode to cover the dead area of the sun, due to factors that hinder the absorption of sunlight which is shadowing them and conversion efficiency of solar cells is the inhibition factor. These barriers to eliminate the electrode linewidth reduces the shadowing to reduce, but simply of the electrode line width is reduced electrode area by reducing the series resistance elevates this because to improve the electrode Aspect ratio(height/width) to increase Ag development of paste is required. In this study, aspect ratio of screen-printing method to increase the electrode Ag paste composition of the binder for the characterization of rheology in the shadow of the electrode by reducing the optical loss of the photoelectric conversion efficiency of solar cells to boost the performance measures was. Properties and printability of the paste, the binder resin sintered characteristics that affect the thermal properties are excellent with a good screen printability acrylic resin, ethyl cellulose, using a resin were evaluated. Prepared paste rheology properties, was formed to evaluate the electrode conductivity and aspect ratio.

320-Channel Multi-Frequency Trans-Admittance Scanner(TAS) for Anomaly Detection (도전율 및 유전율이 다른 병소의 검출을 위한 320-채널 다주파수 Trans-Admittance Scanner(TAS))

  • Oh, Tong-In;Lee, Min-Hyoung;Kim, Hee-Jin;Woo, Eung-Je
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.84-94
    • /
    • 2007
  • In order to collect information on local distribution of conductivity and permittivity underneath a scan probe, we developed a multi-frequency trans-admittance scanner (TAS). Applying a sinusoidal voltage with variable frequency on a chosen distal part of a human body, we measure exit currents from 320 grounded electrodes placed on a chosen surface of the subject. The electrodes are packaged inside a small and light scan probe. The system includes one voltage source and 17 digital ammeters. Front-end of each ammeter is a current-to-voltage converter with virtual grounding of a chosen electrode. The rest of the ammeter is a voltmeter performing digital phase-sensitive demodulation. Using resistor loads, we calibrate the system including the scan probe to compensate frequency-dependent variability of current measurements and also inter-channel variability among multiple. We found that SNR of each ammeter is about 85dB and the minimal measurable current is 5nA. Using saline phantoms with objects made from TX-151, we verified the performance of the lesion estimation algorithm. The error rate of the depth estimation was about 19.7%. For the size estimate, the error rate was about 15.3%. The results suggest improvement in lesion estimation algorithm based on multi-frequency trans-admittance data.

The Effects of Composition on the Interface Resistance in Bi-System Glass Frit (Bi 계열 Glass Frit 조성이 계면저항에 미치는 영향)

  • Kim, In Ae;Shin, Hyo Soon;Yeo, Dong Hun;Jeong, Dae Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.858-862
    • /
    • 2013
  • The front electrode should be used to make solar cell panel so as to collect electron. The front electrode is used by paste type, printed on the Si-solar cell wafer and sintered at about $800^{\circ}C$. The paste is composed Ag powder and glass frit which make the ohmic contact between Ag electrode and n-type semiconductor layer. From the previous study, the Ag electrodes which used two commercial glass frit of Bi-system were so different on the interface resistance. The main composition of them was Bi-Zn-B-Si-O and few additives added in one of them. In this study, glass frit was made with the ratio of $Bi_2O_3$ and ZnO on the main composition, and then paste using glass frit was prepared respectively. And, also, the paste using the glass frit added oxide additives were prepared. The change of interface resistance was not large with the ratio of $Bi_2O_3$ and ZnO. In the case of G6 glass frit, 78 wt% $Bi_2O_3$ addition, the interface resistance was $190{\Omega}$ and most low. In the glass frit added oxide, the case of Ca increased over 10 times than it of G6 glass frit on the interface resistance. It was thaught that after sintering, Ca added glass frit was not flowed to the interface between Ag electrode and wafer but was in the Ag electrode.

The Single-Side Textured Crystalline Silicon Solar Cell Using Dielectric Coating Layer (절연막을 이용한 단면 표면조직화 결정질 실리콘 태양전지)

  • Do, Kyeom-Seon;Park, Seok-Gi;Myoung, Jae-Min;Yu, Gwon-Jong;Song, Hee-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.245-248
    • /
    • 2011
  • Many researches have been carried out to improve light absorption in the crystalline silicon solar cell fabrication. The rear reflection is applied to increase the path length of light, resulting in the light absorption enhancement and thus the efficiency improvement mainly due to increase in short circuit current. In this paper, we manufactured the silicon solar cell using the mono crystalline silicon wafers with $156{\times}156mm^2$, 0.5~3.0 ${\Omega}{\cdot}cm$ of resistivity and p-type. After saw damage removal, the dielectric film ($SiN_x$)on the back surface was deposited, followed by surface texturing in the KOH solution. It resulted in single-side texturing wafer. Then the dielectric film was removed in the HF solution. The silicon wafers were doped with phosphorus by $POCl_3$ with the sheet resistance 50 ${\Omega}/{\Box}$ and then the silicon nitride was deposited on the front surface by the PECVD with 80nm thickness. The electrodes were formed by screen-printing with Ag and Al paste for front and back surface, respectively. The reflectance and transmittance for the single-sided and double-sided textured wafers were compared. The double-sided textured wafer showed higher reflectance and lower transmittance at the long wavelength region, compared to single-sided. The completed crystalline silicon solar cells with different back surface texture showed the conversion efficiency of 17.4% for the single sided and 17.3% for the double sided. The efficiency improvement with single-sided textured solar cell resulted from reflectance increase on back surface and light absorption enhancement.

  • PDF

Determination of the Strength Characteristics of c-Si Solar Cells using Partially Processed Solar Cells (부분공정 태양전지를 이용한 결정질 태양전지의 강도 특성에 관한 연구)

  • Choi, Su Yeol;Lim, Jong Rok
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.5
    • /
    • pp.35-45
    • /
    • 2020
  • Photovoltaic (PV) power system prices have been steadily dropping in recent years due to their mass production and advances in relevant technology. Crystalline silicon (c-Si wafers) account for the largest share of the price of solar cells; reducing the thickness of these wafers is an essential part of increasing the price competitiveness of PV power systems. However, reducing the thickness of c-Si wafers is challenging; typically, phenomena such as bowing and cracking are encountered. While several approaches to address the bowing phenomenon of the c-Si solar cells exist, the only method to study the crack phenomenon (related to the strength of the c-Si solar cells) is the bending test method. Moreover, studies on determining the strength properties of the solar cells have focused largely on c-Si wafers, while those on the strength properties of front and rear-side electrodes and SiNx, the other components of c-Si solar cells, are scarce. In this study, we analyzed the strength characteristics of each layer of c-Si solar cells. The strength characteristics of the sawing mark direction produced during the production of c-Si wafers were also tested. Experiments were conducted using a 4bending tester for a specially manufactured c-Si solar cell. The results indicate that the back side electrode is the main component that experienced bowing, while the front electrode was the primary component regulating the strength of the c-Si solar cell.

Present Status of Thin Film Solar Cells Using Textured Surfaces: A Brief Review

  • Park, Hyeongsik;Iftiquar, S.M.;Le, Anh Huy Tuan;Ahn, Shihyun;Kang, Junyoung;Kim, Yongjun;Yi, Junsin;Kim, Sunbo;Shin, Myunghun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.275-279
    • /
    • 2016
  • This is a brief review on light trapping in Si based thin film solar cells with textured surfaces and transparent conducting oxide front electrodes. The light trapping scheme appears to be essential in improving device efficiency over 10%. As light absorption in a thin film solar cells is not sufficient, light trapping becomes necessary to be effectively implemented with a textured surface. Surface texturing helps in the light trapping, and thereby raises short circuit current density and its efficiency. Such a scheme can be adapted to single junction as well as tandem solar cell, amorphous or micro-crystalline devices. A tandem cell is expected to have superior performance in comparison to a single junction cell and random surface textures appears to be preferable to a periodic structures.

Effect of chemical etchant on the material properties of ZnO:Al front electrodes and the cell performance of silicon thin film solar cells (화학적 식각조건에 따른 ZnO:Al 투명전도막 특성분석 및 실리콘 박막 태양전지 효율변화 연구)

  • Kim, JungJin;Cho, Jun-Sik;Lee, Ji Eun;Jang, Ji Hun;Cho, Yong Soo;Park, Joo Hyung;Song, Jinsoo;Lee, Jeong Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.130.2-130.2
    • /
    • 2011
  • 본 연구에서는 RF magnetron sputtering을 이용하여 실리콘 박막 태양전지용 ZnO:Al 전면전극을 제작하고 다양한 식각조건에 따른 ZnO:Al 박막의 표면형상 변화와 함께 전기적 및 광학적 특성 변화를 조사하였다. pin 구조를 갖는 실리콘 박막 태양전지의 효율 향상을 위해서는 입사광의 산란효과에 따른 광포획 증가가 필수적이며 이를 위하여 ZnO:Al 전면전극의 표면텍스처링 형성이 필요하다. 식각용액으로는 HCl과 HF 등을 사용하였으며 식각용액 농도 및 식각시간을 변화시켰다. 식각 후의 ZnO:Al 박막의 표면형상은 SEM(Scanning Electron Microscope)과 AFM(Atomic Force Microscope)을 이용하여 분석을 하였고, UV-visible-nIR spectrometer를 이용하여 총 투과도 및 산란 투과도를 측정하였다. 이 외에도 four-point probe 및 Hall measurement를 이용하여 전기적 특성 변화를 조사하였다. 다양한 식각조건에 따라 제조된 ZnO:Al 박막 위에 실리콘 박막 태양전지를 제작하여 전면전극의 표면형상에 따른 태양전지 성능변화를 비교 분석하였다.

  • PDF