• Title/Summary/Keyword: friction mode

Search Result 320, Processing Time 0.026 seconds

Estimations of the Hysteretic Damping by Controlled Joint Flexibilities (결합부 유연성에 따른 감쇠거동에 관한 고찰 : 히스테레틱 감쇠)

  • 윤성호
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.258-264
    • /
    • 1999
  • The purpose of this paper is to investigate the damping behavior of a flexible joint. The slip at a structrual joint is selected at the tips of two identical cantilever beams adjoining each other. Both the direction of normal force and its magnitude varies due to the global deformation of the structure from mode to mode in the friction model. The friction dependent on vibration displacements resultsin the same functional behavior of the hysteretic material damping. Linearized energy loss factors are obtained as functions of both linear and torsional spring stiffness for their groups of symmetric and anti-symmetric modes, respectively. Experimental measurements as made for comparisons with analytical estimations by controlling the magnitude of fastening torque in the fastener, Hi-Lite. Trends on damping levelsmeasured in a very common vibration test method make an excellent agreement on the estimated damping levels.

  • PDF

Parameter Analysis of Rotor Shape Modification for Reduction of Squeal Noise (브레이크의 스퀼 저감을 위한 로터 형상변경 파라메터 해석)

  • Lee, Hyun-Young;Oh, Jae-Eung;Cha, Byeong-Gyu;Joe, Yong-Goo;Lee, Jung-Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.820-825
    • /
    • 2004
  • This paper deals with friction-induced vibration of disc brake system under constant friction coefficient. A linear, finite element parameter model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model, the experimental modal test and the dynamometer test are performed. The comparison of experimental and simulation results shows a good agreement and the analysis indicates that mode coupling due to friction force is responsible for disc brake squeal. And squeal type instability is investigated by using the parametric rotor simulation. This indicates parameters which have influence on the propensity of brake squeal. This helped to validate the FEM model and establish confidence in the simulation results. Also they may be useful during real disk brake model.

  • PDF

Transient analysis of lubrication with a squeeze film effect due to the loading rate at the interface of a motor operated valve assembly in nuclear power plants

  • Jaehyung Kim;Sang Hyuk Lee;Sang Kyo Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2905-2918
    • /
    • 2023
  • The valve assembly used in nuclear power plants is important safety-related equipment. In the new standard, the physical attributes are measured using a valve diagnosis test, which is used in the expansion to other non-tested valves using a quantitative test-basis methodology. With a motor-operated actuator, the state of stem's lubrication is related to physical attributes such as the stem factor and the friction coefficient. This study analyzed the numerical transient of fluid and solid lubrication with a squeeze film effect due to the loading rate on the stem and the stem nut using the experimental data. The differential equation that governs the motion mechanism of the stem and stem nut is established and analyzed. The flow rate, the fluid and the solid contact forces are calculated with the friction coefficient. Finally, we found that a change in the friction coefficient results from a change of the shear force in the solid contact mode during the interchange process between the solid contact mode and the fluid contact mode. The qualitative understanding of the squeeze film effect is expanded quantitatively for forces, thread surface distance, velocity, and acceleration, with consideration of the metal solid contact and fluid contact.

Study of Anti-Fading Phenomena during Automotive Braking (자동차 제동시 나타나는 Anti-Fading현상에 관한 연구)

  • Lee, Jung-Ju;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.70-78
    • /
    • 1998
  • Two different friction materials (organic and low-metallic pads) for automotive brakes were studied to investigate the anti-fading phenomena during stop. The anti-fading phenomena were pronounced more in the case of using low metallic friction materials than organic friction materials. The main cause of the anti-fading phenomena was the high dependence of friction coefficient on a sliding speed. The anti-fading was prominent when the initial brake temperature was high in the case of low-metallic friction materials due to the strong stick-slip event at high temperature. On the other hand, the anti-fading was not severe in organic friction materials and the effect was reduced at high braking temperature due to the thermal decomposition of organic friction materials. The strong stickslip phenomena of low metallic friction materials at high temperature induced high torque oscillations during drag test. During this experiment two different braking control modes (pressure controlled and torque controlled modes) were compared. The type of the control mode used for brake test significantly affected the friction characteristics.

A Study on Sliding Mode Control of EHA System for Robust Control (견실한 추종 제어를 위한 EHA 시스템의 슬라이딩 모드제어에 관한 연구)

  • Park, Yong-Ho;Park, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.71-80
    • /
    • 2009
  • The response characteristics of EHA systems are sensitive to the temperature change of working fluid because the temperature of working fluid causes the variation of system parameters such as effective bulk modulus and viscous friction coefficient. In this paper, a precise position control of EHA system using the adaptive sliding mode control system is suggested. The adapted system parameters such as effective bulk modulus and viscous friction coefficient can be used for monitoring failures in the EHA system which has potential applications in the industrial fields. Not only the accuracy of adapted system parameters but also the improved performance and robustness in a given reference position of the cylinder are verified by computer simulation using AMESim software.

Tension Control Using On-Line Compensation of Friction Loss for Continuous Strip Processing Line (연속 공정 라인의 실시간 마찰손 보상을 통한 장력 제어 특성 개선)

  • Lee, Jeong-Uk;Choi, Chang-Ho;Song, Seung-Ho;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1096-1098
    • /
    • 2000
  • This paper proposes a tension control to compensate friction loss using on-line friction torque observer for a continuous strip processing line. Friction loss of roller results in significant deviation of strip tension. accordingly it has an influence on the operation of other adjacent rolls. To avoid tension variation of the strip, a friction torque observer is designed in adjacent roll, which operates in speed control mode. The experimental results show improvement of tension control performance by the proposed friction compensation method.

  • PDF

Experiments on Robust Nonlinear Control for Brush Contact Force Estimation (연마 브러시 접촉력 산출을 위한 비선형 강건제어기 실험)

  • Lee, Byoung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.41-49
    • /
    • 2010
  • Two promising control candidates have been selected to test the sinusoidal reference tracking performance for a brush-type polishing machine having strong nonlinearities and disturbances. The controlled target system is an oscillating mechanism consisting of a common positioning stage of one degree-of-freedom with a screw and a ball nut driven by a servo motor those can be obtained commercially. Beside the strong nonlinearity such as stick-slip friction, the periodic contact of the polishing brush and the work piece adds an external disturbance. Selected control candidates are a Sliding Mode Control (SMC) and a variant of a feedback linearization control called Smooth Robust Nonlinear Control (SRNC). A SMC and SRNC are selected since they have good theoretical backgrounds, are suitable to be implemented in a digital environment and show good disturbance and modeling uncertainty rejection performance. It should be also noted that SRNC has a nobel approach in that it uses the position information to compensate the stickslip friction. For both controllers analytical and experimental studies have been conducted to show control design approaches and to compare the performance against the strong nonlinearity and the disturbances.

Lubrication Analysis at the Vane & Slot Parts of Rotary Compressors (로타리 압축기의 베인, 슬롯부 윤활해석)

  • 이상용;황선웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.136-141
    • /
    • 1997
  • Rotary compressor is one of the most useful mechanism that is widely applied in refrigeration and air-conditioning systems. That is due to character of rotary compressor -compact, simple etc.While there is a lot of strong points, there is room for improvement because it is composed of many parts which have wear problem, friction losses and leakage. In this paper, theoretical investigation about vane and slot parts at which we observe severe wear is carried out. Through the study of lubrication, the behavior of vane during one cycle can be predicted and the cause of wear at slot will be discovered. To solve the equations, fletcher-powell method is applied. The result of analysis show that vane bevell to the slot part with discharge port before rotation of shaft is 180 degree and bevell to the slot part with suction port after 180 degree. The motion of vane is divided 3 mode that depends on behavior of vane. This paper define the first mode when vane tilt to the compression chamber, the second mode when vane tilt to the suction chamber, and the third mode when vane move straightway.

  • PDF

A Dual-mode Pico-positioning System using Active Aerostatic Coupling

  • Mizumoto, Hiroshi;Yabuta, Yoshito;Arii, Shiro;Yabuya, Makoto;Tazoe, Yoichi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.32-37
    • /
    • 2007
  • This paper proposes a dual-mode ultra precision positioning system for machine tools and measuring machines. The objective was to position a machine table with a picometer order of resolution, i.e., pico-positioning. A twist-roller friction drive (TFD) was used in coarse-mode positioning. The TFD, which was driven by an AC servomotor, is a kind of lead screw in mechanical terms, and several centimeters of machine table movement was controlled with a nanometer order of positioning resolution. To eliminate lateral vibration caused by the TFD, an active aerostatic coupling driven by piezoelectric actuators was inserted between the TFD and the machine table. This active aerostatic coupling was also applied as a feed drive device for fine-mode positioning; in the fine mode, the positioning resolution was 50 pm. Factors influencing pico-positioning, such as how noise from displacement sensors and vibrations in the aerostatic guideway affect positioning resolution, are discussed.

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.