• Title/Summary/Keyword: friction materials

Search Result 1,475, Processing Time 0.031 seconds

Design of Low-cost Automated Ventilator Using AMBU-bag (암부백을 이용한 저가형 자동 인공호흡기 설계 및 제작)

  • Shin, Hee-Bin;Lee, Hyo-Kyeong;Oh, Ga-Young
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • This study proposes the design and implementation of a low-cost emergency ventilator which can be helpful during the COVID-19 pandemic where the supply of automatic ventilators is not smooth compared with the urgent demand worldwide. Easy implementation and lower price were made possible by using AMBU-bag and off-the-shelf embedded micro-controller board. Moreover, while 3D printing is used by companies and experts around the world to build prototype hardware, materials which are readily available from surrounding environments so that people in countries where it is difficult to access many advanced technologies could manufacture the system. The design features AMBU-bag automation, not use 3D printing, and it can contrl speed. By allowing speed control, ventilation can be performed according to the conditions of the patient being used. A complementary point in the study is that it is difficult to fix the start point of the wiper motor used first. A method for complementing this is a method for replacing the brush DC motor with a position feedback function. Secondly, the AMBU-bag may wear out in the long-term process of compressing the AMBU-bag because the arm and the fixing frame are made of wood. To complement this, the part of fixing frame and arm parts that the AMBU-bag touches need to be wrapped in a material such as silicon to minimize friction.

Numerical Analytic Study considering the Behavior Characteristics between Individual Blocks in Block-Type Retaining Walls (블록식 보강토 옹벽에서 개별 블록간 거동특성을 고려한 수치해석적 연구)

  • Hwang, Sungpil;Park, Byungsuk;Woo, Yong-Hoon;Park, Sangki;Kim, Wooseok
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.579-588
    • /
    • 2021
  • Reinforced earth retaining walls have been widely used in recent years, as they are superior from the landscape perspective than normal concrete retaining walls. However, as reinforced earth retaining walls are made of various materials depending on site, existing design methods cannot secure stability, and a variety of problems have occurred. Studies on the design and stability analysis methods, which are different from existing methods, have been conducted to address these problems. This study conducted a stability investigation using numerical analysis, and blocks of reinforced earth retaining walls were individually applied, which is different from pre-existing numerical analyses. To verify the input values of the numerical analysis when applying individual blocks, real-scale experiments of the friction characteristics between the blocks and the connection properties between the blocks and stiffener were conducted. The applicability of the block conditions, which were the same as those of real sites, was verified through numerical analysis, and will be used for the stability review and design of various combinations of blocks and stiffeners.

Types and Characteristics of Landslides in Danyang Geopark (단양 지질공원 내의 산사태 유형과 특징)

  • Seong-Woo Moon;Ho-Geun Kim;Yong-Seok Seo
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.427-438
    • /
    • 2023
  • We carried out a geological survey to classify the types of mass movement in Danyang Geopark (where various rock types are distributed) and analyzed the mechanical and hydraulic characteristics of landslide materials using a series of laboratory tests. Debris flows occurred in areas of limestone/marble, shale, and porphyroblastic gneiss, and limestone/marble landslides were distinguished from the others through the presence of karren topography. Soil tests showed that soil derived from weathered gneiss, which has a higher proportion of coarse grains, has a higher friction angle, lower cohesion, and larger hydraulic conductivity than soils from areas of limestone/marble, and shale. Rock failure mass movements occurred in areas of phyllite, sandstone, and conglomerate and were subdivided into plane failure, block-fall, and boulder-fall types in areas of phyllite, sandstone, and conglomerate, respectively. The shear strength of phyllite is much lower than that of the other types of rock, which have similar rock quality. The slake durability index of the conglomerate is similar to that of the other rock types, which have similar degrees of weathering, but differential weathering of the matrix and clasts was clearly observed when comparing the samples before and after the test. This study can help establish appropriate reinforcement and disaster prevention measures, which depend on the type of mass movement expected given the geological characteristics of an area.

Characteristics of Deformation and Shear Strength of Parallel Grading Coarse-grained Materials Using Large Triaxial Test Equipment (대형삼축시험에 의한 상사입도 조립재료의 변형 및 전단강도 특성)

  • Jin, Guang-Ri;Snin, Dong-Hoon;Im, Eun-Sang;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.57-67
    • /
    • 2009
  • Along with the advanced construction technologies, the maximum size of coarse aggregate used for dam construction ranges from several cm to 1m. Testing the original gradation samples is not only expensive but also causes many technical difficulties. Generally, indoor tests are performed on the samples with the parallel grading method after which the results are applied to the design and interpretation of the actual geotechnical structure. In order to anticipate the exact behavior characteristics for the geotechnical structure, it is necessary to understand the changes in the shear behavior. In this study, the Large Triaxial Test was performed on the parallel grading method samples that were restructured with river bed sand-gravel, with a different maximum size, which is the material that was used to construct Dam B in Korea. And the Stress - Strain characteristics of the parallel grading method samples and the characteristics of the shear strength were compared and analyzed. In the test results, the coarse-grained showed strain softening and expansion behavior of the volume, which became more obvious as the maximum size increased. The internal angle of friction and the shear strength appeared to increase as the maximum size of the parallel grading method sample increased.

Effects of Fiber Orientations and Hybrid Ratios on Lubricant Tribological Characteristics of $Al_2O_{3f}/SiC_p$ Reinforced MMCs ($Al_2O_{3f}/SiC_p$ 금속복합재료의 섬유방향과 혼합비가 윤활마모특성에 미치는 영향)

  • Wang, Yi-Qi;Song, Jung-Il
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.15-23
    • /
    • 2009
  • The lubricant tribological characteristics of $Al_2O_3$ fiber and SiC particle hybrid metal matrix composites (MMCs) fabricated by squeeze casting method was investigated using a pin-on-disk wear tester. The wear tests of the MMCs were performed according to fiber/particle hybrid ratio in the planar-random (PR) and normal (N) orientations sliding against a counter steel disk at a fixed speed and $25\;kg_f$ loading under different sliding distances and temperatures. The test results showed that the wear behavior of MMCs varied with fiber orientation and hybrid ratio. At room temperature, the lubricant wear behavior of F20P0 unhybrid PR-MMCs was superior to that of N-MMCs while the hybrid composites exhibited the reverse lubricant wear behavior. It was also revealed that the wear resistance of PR-MMCs was superior to that of the N-MMCs due to the joint action of reinforcements and lubricant film between the friction surfaces at an elevated temperature of $100^{\circ}C$ for both fiber only and hybrid cases. In case of $150^{\circ}C$, although the trend of weight loss was similar to that of others, the wear resistance of PR-MMCs was better than that of N-MMCs for hybrid MMCs.

The Production, the Use, the Number of Workers and Exposure Level of Asbestos in Korea (우리나라의 석면 생산과 사용 및 근로자 수와 노출농도의 변화)

  • Choi, Jung Keun;Paek, Do Myung;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.2
    • /
    • pp.242-253
    • /
    • 1998
  • South Korea has been producing asbestos over 60 years. The use of asbestos was over 50 years for production of asbestos slate and 27 years for asbestos friction materials including asbestos textile and brake-lining. Thus, it can be supposed that asbestos related diseases such as asbestosis, lung cancer and mesothelioma could be found in the vulnerable workers exposed to asbestos in 1955-1975, given the average latency period of 10-30 years. Asbestos was produced primarily by Japanese during World War II In Korea. The production of chrysotile peaked to 4,815 tons in 1944. From 1978 to 1984, 10,000 tons of asbestos were produced annually. However, the production was interrupted by raising labor costs and extinction of mine reserves, and finally they had to depend on import for the need of asbestos. In 1945, there were 16 asbestos mines, in total, with the addition of new asbestos mines in South Korea. Imports of asbestos was increased from 74,000 tons to 95,000 tons during the period of 1976 - 1992. But the imports was reduced to 88,000 tons in 1995. Since, in addition to the import of asbestos itself, the imports of asbestos products were increased as well and the accumulation of asbestos reached to 30,000 tons during the period of 1964 to 1993. In 1965, there was only one asbestos company with 207 employees. But the size of asbestos industry has been expanded so much that 118 asbestos companies could be found in 1993 with 1,476 workers. However, there was no record on the survey of asbestos concentration to which workers were exposed in any companies in 1983. The record of the air-borne concentration of the asbestos in textile working places in 1984 showed 6.7 fibers/cc by geometric mean(GM), but it was reduced to 1.2 fibers/cc in 1993. GMs of asbestos in working places for construction materials and asbestos textiles were also decreased from 1.7 fibers/cc to 0.55 fibers/cc during the period of 1984 - 1996.

  • PDF

Effects of Limestone Powder and Silica Fume on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Mortars (고강도 고함량 고로슬래그 혼합 시멘트 모르터의 수화 및 포졸란 반응에 미치는 석회석 미분말과 실리카퓸의 영향)

  • Jeong, Ji-Yong;Jang, Seung-Yup;Choi, Young-Cheol;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • To evaluate the effects of limestone powder and silica fume on the properties of high-strength high-volume ground granulated blast-furnace slag (GGBFS) blended cement concrete, this study investigated the rheology, strength development, hydration and pozzolanic reaction characteristics, porosity and pore size distribution of high-strength mortars with the water-to-binder ratio of 20, 50 to 80% GGBFS, up to 20% limestone powder, and up to 10% silica fume. According to test results, compared with the Portland cement mixture, the high-volume GGBFS mixture had much higher flow due to the low surface friction of GGBFS particles and higher strength in the early age due to the accelerated cement hydration by increase of free water; however, because of too low water-to-binder ratio and cement content, and lack of calcium hydroxide content, the pozzolanic reactio cannot be activated and the long-term strength development was limited. Limestone powder did not affect the flowability, and also accelerate the early cement hydration. However, because its effect on the acceleration of cement hydration is not greater than that of GGBFS, and it does not have hydraulic reactivity unlikely to GGBFS, compressive strength was reduced proportional to the replacement ratio of limestone powder. Also, silica fume and very fine GGBFS lowered flow and strength by absorbing more free water required for cement hydration. Capillary porosities of GGBFS blended mortars were smaller than that of OPC mortar, but the effect of limestone powder on porosity was not noticeable, and silica fume increased porosity due to low degree of hydration. Nevertheless, it is confirmed that the addition of GGBFS and silica fume increases fine pores.

Investigation of Viscoelastic Properties of EPDM/PP Thermoplastic Vulcanizates for Reducing Innerbelt Weatherstrip Squeak Noise of Electric Vehicles (전기차 인너벨트 웨더스트립용 EPDM/PP Thermoplastic Vulcanizates 재료설계인자에 따른 점탄성과 글라스 마찰 소음 상관관계 연구)

  • Cho, Seunghyun;Yoon, Bumyong;Lee, Sanghyun;Hong, Kyoung Min;Lee, Sang Hyun;Suhr, Jonghwan
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • Due to enormous market growing of electric vehicles without combustion engine, reducing unwanted BSR (buzz, squeak, and rattle) noise is highly demanded for vehicle quality and performance. Particularly, innerbelt weatherstrips which not only block wind noise, rain, and dust from outside, but also reduce noise and vibration of door glass and vehicle are required to exhibit high damping properties for improved BSR performance of the vehicle. Thermoplastic elastomers (TPEs), which can be recycled and have lighter weight than thermoset elastomers, are receiving much attention for weatherstrip material, but TPEs exhibit low material damping and compression set causing frictional noise and vibration between the door glass and the weatherstrip. In this study, high damping EPDM (ethylene-propylene-diene monomer)/PP (polypropylene) thermoplastic vulcanizates (TPV) were investigated by varying EPDM/PP ratio and ENB (ethylidene norbornene) fraction in EPDM. Viscoelastic properties of TPV materials were characterized by assuming that the material damping is directly related to the viscoelasticity. The optimum material damping factor (tanδ peak 0.611) was achieved with low PP ratio (14 wt%) and high ENB fraction (8.9 wt%), which was increased by 140% compared to the reference (tanδ 0.254). The improved damping is believed due to high fraction of flexible EPDM chains and higher interfacial slippage area of EPDM particles generated by increasing ENB fraction in EPDM. The stick-slip test was conducted to characterize frictional noise and vibration of the TPV weatherstrip. With improved TPV material damping, the acceleration peak of frictional vibration decreased by about 57.9%. This finding can not only improve BSR performance of electric vehicles by designing material damping of weatherstrips but also contribute to various structural applications such as urban air mobility or aircrafts, which require lightweight and high damping properties.

Evaluation of frictional forces between orthodontic brackets and archwires (교정용 브라켓과 교정선 사이의 마찰력)

  • Jeong, Tae-Jong;Choie, Mok-Kyun
    • The korean journal of orthodontics
    • /
    • v.30 no.5 s.82
    • /
    • pp.613-623
    • /
    • 2000
  • The purpose of this study was to amount of the frictional forces with the brackets and wires, ligation methods, dry/wet, offsets, interbracket distances, velocity and to compare them each other by different conditions. This study tested 0.018'x0.025' slot sized 8 types of orthodontic bracket systems and 0.016', 0.016'x0.022' sized stainless steel, NiTi, Cu-NiTi orthodontic wires. One cuspid bracket were positioned on the slide glass and archwire was engaged into bracket and ligated with elastomeric modules. The values of frictional forces were measured with the instron universal testing machine. The results were as follows; 1. Polycrystalline ceramic bracket had the highest mean frictional forces and followed and by ceramic reinforced plastic bracket, metal bracket, plastic bracket with metal slot, monocrystalline ceramic bracket, single bracket, self-ligating bracket, friction free bracket in descending order. The self-ligating bracket showed low frictional forces in the round wires and high frictional forces in the rectangular wires. 2. Stainless steel wires had the least frictional forces and followed by NiTi, Cu-NiTi wires in descending order. Round wires had lower frictional forces then that of rectangular wires. 3. The stainless steel ligation method had significantly greater mean frictional forces them the elastomeric module ligation method. 4. Artificial saliva statistically increased the frictional forces in stainless steel wire, NiTi wire and Cu-NiTi wire. 5. There was a statistically significant difference with offset change 6. There was no statistically significant difference with interbracket distance in stainless steel wires but a significant difference in NiTi wires as the interbracket was decreased. 7 There was no statistically significant difference with velocity change. From the above findings, self-ligating bracket, stainless steel wires and the elastomeric module ligation method might be effective than any other materials to reduce the frictional forces in the orthodontic treatment and can be correlated to clinical situations seen in orthodontic patient care.

  • PDF

Resolution Method of Hazard Factor for Life Safety in Rental Housing Complex (임대주택단지의 생활안전 위해요인 해소방안)

  • Sohn, Jeong-Rak;Cho, Gun-Hee;Kim, Jin-Won;Song, Sang-Hoon
    • Land and Housing Review
    • /
    • v.8 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • The government has been constructing and supplying public rental housing to ordinary people in order to stabilize housing since 1989. However, the public rental houses initially supplied to ordinary people are at high risk for safety accidents due to the deterioration of the facilities. Therefore, this study is aimed to propose a solution to solve the life safety hazards of the old rental housing complex as a follow-up study of Analysis of Accident Patterns and Hazard Factor for Life Safety in Rental Housing Complex. Types of life safety accidents that occur in public rental housing complexes are sliding, falling, crash, falling objects, breakage, fire accidents, traffic accidents and criminal accidents. The types of safety accidents that occur in rental housing complexes analyzed in this study are sliding, crashes, falling objects, and fire accidents. Although the incidence of safety accidents such as falling, breakage, traffic accidents and crime accidents in public rental housing complexes is low, these types are likely to cause safety accidents. The method of this study utilized interviews and seminar results, and it suggested ways to solve the life safety hazards in rental housing complexes. Interviews were conducted with residents and managers of rental housing complexes. Seminars were conducted twice with experts in construction, maintenance, asset management, housing welfare and safety. Through interviews and seminars, this study categorizes the life safety hazards that occur in rental housing complexes by types of accidents and suggests ways to resolve them as follows. (1) sliding ; use of flooring materials with high friction coefficient, installation of safety devices such as safety handles, implementation of maintenance, safety inspections and safety education, etc. (2) falling ; supplementation of safety facilities, Improvement of the design method of the falling parts, Safety education, etc. (3) crash ; increase the effective width of the elevator door, increase the effective width of the lamp, improve the lamp type (U type ${\rightarrow}$ I type), etc. (4) falling objects and breakage ; design of furniture considering the usability of residents, replacement of old facilities, enhancement of safety consciousness of residents, safety education, etc. (5) fire accidents ; installation of fire safety equipment, improvement by emergency evacuation, safety inspection and safety education, etc. (6) traffic accidents ; securing parking spaces, installing safety facilities, conducting safety education, etc. (7) criminal accidents; improvement of CCTV pixels, installation of street lights, removal of blind spots in the complex, securing of security, etc. The roles of suppliers, administrators and users of public rental housing proposed in this study are summarized as follows. Suppliers of rental housing should take into consideration the risk factors that may arise not only in the design and construction but also in the maintenance phase and should consider the possibility of easily repairing old facilities considering the life cycle of rental housing. Next, Administrators of rental housing should consider the safety of the users of the rental housing, conduct safety checks from time to time, and immediately remove any hazardous elements within the apartment complex. Finally, the users of the rental housing needs to form a sense of ownership of all the facilities in the rental housing complex, and efforts should be made not to cause safety accidents caused by the user's carelessness. The results of this study can provide the necessary information to enable residents of rental housing complexes to live a safe and comfortable residential life. It is also expected that this information will be used to reduce the incidence of safety accidents in rental housing complexes.