• Title/Summary/Keyword: friction loss

Search Result 547, Processing Time 0.032 seconds

An Experimental Study for the Effect of Friction Modifier Added in Fuel on the Engine Friction and Fuel Economy (연료 주입형 마찰 조정제가 엔진 마찰 및 연비에 미치는 영향에 대한 실험적 연구)

  • 조명래;강경필;오대윤;최재권
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.133-137
    • /
    • 2002
  • This paper reports on the effect of fuel additive friction modifier on the engine friction and fuel consumption. The test of engine friction and fuel consumption is performed for the each oils and fuels. The TFA4724 friction modifier is added in test oil and fuel. The test results show that total engine friction is a decrease of 0.7-2.0% compared with base fuel, and fuel consumption is improved by 0.3%. The amount of friction reduction corresponds to that of boundary friction loss term in ring-pack friction losses. From the results, it is thought that the additive friction modifier in the fuel is effective to reduce the boundary friction in ring-pack.

Friction Power Loss Reduction for a Marine Diesel Engine Piston (박용엔진 피스톤 스커트 프로파일 변경에 의한 마찰손실(FMEP) 저감 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.132-139
    • /
    • 2016
  • The piston of a marine diesel engine works under severe conditions, including a combustion pressure of over 180 bar, high thermal load, and high speed. Therefore, the analyses of the fatigue strength, thermal load, clamping (bolting) system and lubrication performance are important in achieving a robust piston design. Designing the surface profile and the skirt ovality carefully is important to prevent severe wear and reduce frictional loss for engine efficiency. This study performs flexible multi-body dynamic and elasto-hydrodynamic (EHD) analyses using AVL/EXCITE/PU are performed to evaluate tribological characteristics. The numerical techniques employed to perform the EHD analysis are as follows: (1) averaged Reynolds equation considering the surface roughness; (2) Greenwood_Tripp model considering the solid_to_solid contact using the statistical values of the summit roughness; and (3) flow factor considering the surface topology. This study also compares two cases of skirt shapes with minimum oil film thickness, peak oil film pressure, asperity contact pressure, wear rate using the Archard model and friction power loss (i.e., frictional loss mean effective pressure (FMEP)). Accordingly, the study compares the calculated wear pattern with the field test result of the piston operating for 12,000h to verify the quantitative integrity of the numerical analysis. The results show that the selected profile and the piston skirt ovality reduce friction power loss and peak oil film pressure by 7% and 57%, respectively. They also increase the minimum oil film thickness by 34%.

A study on the friction head loss in flat aluminum micro multi tubes with nonazeotropic refrigerant mixtures R-410A (비공비 혼합냉매 R-410A를 적용한 납작한 알루미늄 마이크로 멀티 튜브에서의 마찰손실에 관한 연구)

  • Lee, Jeong-Kun;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.37-43
    • /
    • 2019
  • This study conducted a research as to condensation heat transfer friction loss headby using three types of flat micro multi-channel tubes with different processing of micro-fin and number of channels inside the pipes and different sizes of appearances. In addition, identical studies were conducted by using smoothing circular tubes with 5mm external diameter to study heat enhancement factor and pressure drop penalty factor. 1) The friction head loss showed an increase as the vapor quality and mass flux increased. In case of saturation temperature, it shows an increase as it gets lower. These factors are the reason occurring as the lower the saturation temperature is, the higher the density of refrigerant vapor gets. The influence of heat flux is similar as the dryness is low, but as it gets higher, it lowers in heat flux, and as the high temperature of high heat flux, it is a factor that occurs as the density gets lower. 2) RMS error of the in case of friction head loss, it showed to be predicted as 0.45~0.67 by Chisholm, Friedel, Lockhart and Martinelli. 3) As forfriction head loss penalty factor, the smaller the aspect ratio is, the larger the penalty factor gets, and as for the effect of micro-fin, the penalty factor increased because it decreases to the gas fluid the way groove for the refrigerant's flow.

Velocity and Flow Friction Characteristic of Working Fluid in Stirling Engine Regenerator (II) - Flow Friction Characteristic of Working Fluid in Stirling Engine Regenerator - (스털링기관 재생기내의 작동유체 유속 및 마찰저항 특성(II) - 작동유체 유동마찰저항 특성 -)

  • Kim, T.H.;Choi, C.R.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The output of the Stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide basic data for the design of regenerator matrix, characteristics of flow friction loss were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, two different wire screens were used. The results are summarized as follows; 1. With the wire screen of No. 50 as regenerator matrices, pressure drop of working fluid of the oscillating flow is shown as 3 times higher than that of one directional flow, not too much influenced by the number of packed meshes. 2. With the wire screen of No. 100 as regenerator matrices, pressure drop of working fluid of the oscillating flow is shown as 2.5 times on the average higher than that of one directional flow, not too much influenced by the number of packed meshes. 3. Under one directional flow which used regenerator matrices with both 200, 240, and 280 wire screens of No. 50 and 320, 370, and 420 wire screens of No. 100, the relationship between the friction factor and Reynold No. is shown as the following formula. $$f=\frac{0.00326639}{Re\iota}-1.29106{\times}10^{-4}$$ 4. Under oscillating flow which used regenerator matrices with both 200, 240, and 280 wire screens of No. 50 and 320, 370, and 420 wire screens of No. 100, the relationship between the friction factor and Reynold No. is shown as the following formula. $$f_r=\frac{0.000918567}{Re\iota}+1.86101{\times}10^{-5}$$ 5. The pressure drop is shown as high in proportion as the number of meshes has been higher, and the number of packed wire screens as matrices increases.

Tribological Characteristics of Ceramic Coated High Power Brake Discs (세라믹 코팅 고에너지 제동 디스크의 트라이볼로지적 특성)

  • 이희성;강부병
    • Tribology and Lubricants
    • /
    • v.18 no.4
    • /
    • pp.305-311
    • /
    • 2002
  • Three different kinds of brake discs including two coated brake discs and one steel disc were tested under the same experimental conditions on a reduced scale braking test bench. A braking test bench was specially designed to analyse thermo-mechanical and frictional behaviors of two types of brake with different sizes in stop and hold braking modes. Plasma spray coating technique was also used to coat the discs with ceramic powder. During the test four commercial brake pads were coupled with discs. Ceramic coated discs showed good stability in friction coefficient at high speed and high energy braking conditions. But they caused large wear loss of pad mass compared with the steel disc. It was shown that thermal barrier effect in ceramic coated discs adjusted the thermal partition between pad and disc. For a steel disc. it showed fluctuating friction coefficient at high speed but small wear loss of pad mass compared with ceramic coated discs.

Braking Performance of Ceramic Coated Discs

  • Kang, B.B.;Lee, H.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.429-430
    • /
    • 2002
  • In this study, three kinds of brake: discs including two coated brake discs and one steel disc were tested under the same experimental conditions on a reduced scale braking test bench. Plasma spray coating technique was used to coat ceramic powder on the discs. In the test, four commercial sintered brake pads were coupled with discs. Ceramic coated discs have shown good stability in friction coefficient at high speed and high energy braking conditions. However, ceramic coated discs caused more wear loss of pad mass than the steel disc. It was shown that thermal barrier effect in ceramic coated discs adjusted the thermal partition between pad and disc. Steel disc showed fluctuating friction coefficient at high speed but less wear loss of pad mass than ceramic coated discs.

  • PDF

Effectiveness of Friction Loss Calculation Used for Water Mist Fire Extinguishing System on Marine Vessels

  • Lee Kyung-Woo;Kim You-Taek;Lee Young-Ho;Kim Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.86-97
    • /
    • 2005
  • Nowadays, Water Mist Fire Extinguishing System is increasingly used in maritime field for various application. The fire extinguishing capability of the system should be verified by hydraulic calculation in the same manner as the conventional water based fire extinguishing system such as sprinkler system. water spray system and etc. Additionally, the review of effectiveness of friction loss calculation method used for hydraulic calculation is needed because the pipe flow characteristic of its piping system has higher Reynolds number than that of the conventional system. In this paper the review work was carried out based on the NFPA Code 750.

Performance Characteristic Analysis for Open Channel Type Regenerative Pump (개수로형 재생펌프의 특성해석에 관한 연구)

  • Shin, Dong-Yun;Choi, Chang-Ho;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.46-53
    • /
    • 2007
  • An improved performance characteristics analysis model of a regenerative pump is proposed in the present paper. For its low characteristic speed, a regenerative pump generates high head with low flow rate. However, the efficiency is fairly low due to the skin friction between impeller and casing. Also, the complexity of its internal flow pattern makes prediction of performance characteristics difficult. In the present research, a one-dimensional analysis model was improved with consideration of disc friction loss, minor loss, and modified flow length, and the result was proven to be close in range with the results from experiments.

A Study on Wear Characteristics of Degraded Stainless Steel (열화된 스테인리스강의 마모특성에 관한 연구)

  • Cho, Sung-Duck;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.21-30
    • /
    • 2017
  • This study deals with the characteristics of degraded stainless steel. Stainless steel is heat treated to ensure mechanical properties when designing or manufacturing machinery parts or equipment. In this study, the mechanical properties and wear characteristics of three kinds of stainless steels after artificially heat-treated at 753 K~993 K, where chrome depletion occurs near the grain boundary, were evaluated. The microstructure and fracture surface were also observed. From the results, friction coefficient and wear loss decreased with increasing the heat treatment temperature regardless of the type of stainless steel. Also, as the tensile strength increased, the friction coefficient and wear loss decreased. Wear loss showed proportional to a tendency to increase with increasing friction coefficient.

Experimental Analysis of Ceramic Coated High Power Brake Discs (세라믹 코팅 고에너지 제동 디스크의 마찰특성 연구)

  • 강부병;이희성
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.97-107
    • /
    • 1998
  • Three different kinds of brake discs including two coated brake discs and one steel disc were tested under the same experimental conditions on a reduced scale braking test bench. Braking test bench was specially designed to analyse thermo-mechanical and frictional behaviors of two sizes of brake discs in stop and hold braking modes. And Plasma spray coating technique was used to coat ceramic powder on the discs. In the test four commercial brake pads were coupled with discs. Ceramic coated discs had shown good stability in friction coefficient at high speed and high energy braking conditions. But they caused large pad mass wear loss compared with the steel disc. It was shown that thermal barrier effect in ceramic coated discs adjusted the thermal partition between pad and disc. For a steel disc, it had shown fluctuating friction coefficient at high speed but a fittie pad mass wear loss compared with ceramic coated discs.

  • PDF