• 제목/요약/키워드: friction face

검색결과 112건 처리시간 0.024초

전단하중 하의 피로균열 전파거동의 특징 (The Characteristics of Fatigue Crack Propagation Behavior in Shear Load)

  • 이정무;송삼홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.302-307
    • /
    • 2004
  • This paper reviewed characteristics of fatigue crack behavior observed by changing various shapes of initial crack and magnitudes of loading in compact tension shear(CTS) specimen subjected to shear loading. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Meanwhile, the secondary fatigue crack in the low-loading condition which was created in the notch root due to friction on the pre-crack face grew to a main crack. Influenced by the mode II loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. Propagation path of fatigue crack under the shear loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.

  • PDF

소수력 터빈용 기계평면시일의 표면마찰형상에 따른 접촉특성 해석에관한 연구 (A Study on Contact Characteristics of Mechanical Face Seals for a Hydro-power Turbine Depending on the Rubbing Surface Geometry)

  • 김청균
    • Tribology and Lubricants
    • /
    • 제22권3호
    • /
    • pp.119-126
    • /
    • 2006
  • In this paper, the contact behavior characteristics of a primary sealing components such as a seal ring and a seal seat has been presented for a small hydro-power turbine. Using the non-linear FEM analysis, the maximum temperature, the axial displacement, radial differences between a seal ring and a seal seat, and maximum contact normal stress have been analyzed for three optimized sealing profiles in which are designed based on the FEM analysis and Taguchi's experimental method. The three primary sealing profiles between a seal ring and a seal seat are strongly related to a leakage of a water for a hydro-power turbine and wear of a primary sealing component. The computed results show that the contact rubbing area between a seal ring and a seal seat is very important for reducing a friction heating and wear in a sealing gap, and increasing a contact normal stress in primary sealing components. Based on the FEM computation, models II and III in which have a small rubbing surface of seal rings show low dilatation of primary sealing components, and high normal contact stress between a seal ring and a seal seat. Thus, the FEM computed results recommend a short contacting width of a primary sealing component for reducing a leakage and thermal distortions, and expanding a seal life. This means that a conventional primary sealing component may be switched to a reduced sealing face of seal rings.

정면밀링에서 공구경사각에 따른 비절삭저항 변화 (Variation of Specific Cutting Pressure with Different Tool Rake Angles in Face Milling)

  • 류시형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.63-68
    • /
    • 1996
  • In this study, the effect of tool rake angles and the change of cutting conditions on specific cutting pressure in face milling is investigated. The cutting force in face milling is predicted from the double cutting edge model in 3-dimensional cutting. Conventional specific cutting pressure model is modified by considering the variation of tool rake angles. Effectiveness of the modified cutting force model is verified by the experiments using special face milling cutters with different cutter pockets and various rake angles. From the comparison of the pressented model and the specific cutting pressure, it is shown that the axial force can be predicted by the tangential and redial forces without the knowledge of friction angle and shear angle. Also, the relation between specific cutting pressure and cutting cindition including feedrate, cutting velocity and depth of cut is studied.

  • PDF

3차원 절삭시 칩-공구 마찰 및 전단 특성 해석 (Analysis of Chip-Tool Friction and Shear Characteristics in 3-D Cutting Process)

  • 이영문;최원식;송태성;박태준;장은실
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.190-196
    • /
    • 1999
  • In this study, a procedure for analyzing chip-tool friction and shear processes in 3-D cutting with a single point tool has been established. The edge of a single point tool including circular nose is modified to the equivalent straight edge, then 3-D cutting with a single point tool is reduced to equivalent oblique cutting. Transforming the conventional coordinate systems and using the measured three component of cutting forces, force components on the rake face and the shear plane of the equivalent oblique cutting system can be obtained. And it can be possible to assess the chip-tool friction and shear characteristics in 3-D cutting with a single point tool.

  • PDF

SIP 말뚝의 주면마찰 특성에 관한 연구 (A Study on the Skin Friction Characteristics of SIP(Soil-cement Injected Precast Pile))

  • 천병식;임해식;강재모;김도형;지원백
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.583-588
    • /
    • 2002
  • As environmental problem in course of construction has been a matter of interest, noise and vibration in the process of piling are considered as a serious problem. For this reason, the use of SIP method inserting pile as soon as boring and cement grouting is rapidly increasing for preventing vibration and noise. But a resonable bearing capacity formula for SIP method does not exit and even the standard specification for domestic condition isn't formed, though the lateral friction between cement paste and the ground does an important role and boring depth largely influences to the design bearing capacity, applying the SIP method . Therefore, the lateral friction was analyzed after the direct shear test worked with the lateral face of SIP and the soil.

  • PDF

Stability evaluation for the excavation face of shield tunnel across the Yangtze River by multi-factor analysis

  • Xue, Yiguo;Li, Xin;Qiu, Daohong;Ma, Xinmin;Kong, Fanmeng;Qu, Chuanqi;Zhao, Ying
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.283-293
    • /
    • 2019
  • Evaluating the stability of the excavation face of the cross-river shield tunnel with good accuracy is considered as a nonlinear and multivariable complex issue. Understanding the stability evaluation method of the shield tunnel excavation face is vital to operate and control the shield machine during shield tunneling. Considering the instability mechanism of the excavation face of the cross-river shield and the characteristics of this engineering, seven evaluation indexes of the stability of the excavation face were selected, i.e., the over-span ratio, buried depth of the tunnel, groundwater condition, soil permeability, internal friction angle, soil cohesion and advancing speed. The weight of each evaluation index was obtained by using the analytic hierarchy process and the entropy weight method. The evaluation model of the cross-river shield construction excavation face stability is established based on the idea point method. The feasibility of the evaluation model was verified by the engineering application in a cross-river shield tunnel project in China. Results obtained via the evaluation model are in good agreement with the actual construction situation. The proposed evaluation method is demonstrated as a promising and innovative method for the stability evaluation and safety construction of the cross-river shield tunnel engineerings.

마찰접촉조건에 따른 소수력 수차용 밀봉장치의 마찰.마멸특성 연구 (A Study on the Friction and Wear Characteristics of Contact Sealing Units for a Small Hydro-power Turbine Under Various Rubbing Conditions)

  • 김청균
    • Tribology and Lubricants
    • /
    • 제22권6호
    • /
    • pp.314-319
    • /
    • 2006
  • In this paper, the friction and wear characteristics of contact type sealing unit far a water turbine have been presented. The sealing unit for a small hydropower generation is to stop a leakage of circulating water from an outside of an impeller to an inside of a rolling bearing. The friction heating between a seal ring and a seal seat may radically increase a surface temperature in which increase a power loss and wear on the rubbing surface. The surface wear strongly affect to the seal life of a mechanical face seal. In this study, the hardness of a stainless steel in which is a heat-treated is 892.8 in Victors hardness and the hardness of silicone carbide of SiC is 714.1 in Victors hardness. The surface hardness of a heat-treated stainless steel is 25% high compared with that of a ceramic material of SiC. The contact modes of rubbing surfaces are a dry friction, a water film friction and a mixed friction that is contaminated by a dust, silt, and moistures, etc. These two factors of a contact rubbing modes and a material property are very important parameters on the tribological performance such as a friction and wear between a seal ring and a seal seat in primary sealing unit. The experimental result shows that the surface hardness of a seal material is very important on the friction coefficient and a wear volume. Thus, the results recommend higher hardness of a seal material, which may reduce a friction loss and increase a wear life of primary seal components.

보스-리브 시험 시 펀치 형상 및 마찰 조건에 따른 변형 양상에 대한 연구 (Effect of Punch Design and Friction Condition on Deformation Pattern in Boss and Rib Test)

  • 윤여웅;강성훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.332-337
    • /
    • 2009
  • Recently, boss and rib test based on backward extrusion process was proposed to quantitative evaluate the interfacial friction condition in bulk forming process. In this test, the tube-shaped punch with hole pressurizes the workpiece so that the boss and rib are formed along the hole and outer surface of the punch. It was experimentally and numerically revealed that the height of boss is higher than that of the rib under the severe friction condition. This work is focused on the effect of the punch design and friction condition on deformation pattern in boss and rib test. From the boss and rib test simulations, it was found that there is slight variation in both the heights of boss and rib according to the length of punch land, nose radius, and face angle. However the hole diameter of the punch and the clearance between the punch and die have a significant influence on the heights of the boss and rib. In addition, the effect of flow stress was also investigated on the deformation patterns through FE simulations.

  • PDF

일차파괴된 암반사면의 전단강도 및 보강설계법 고찰 (A study on the determination of shear strength and the support design of pre-failed rock slope)

  • 조태진;김영호
    • 터널과지하공간
    • /
    • 제5권2호
    • /
    • pp.104-113
    • /
    • 1995
  • Shear strength of the discontinuity on which the pre-failure of rock slope was occurred during surface excavation was measured through the direct shear test using core samples obtained in-situ. Internal friction angle was increased as the roughness of discontinuity surface(JRC) was increased. Results of the tilt test using core samples of higher JRC also showed very similar trend as those of the direct shear test. When the samples replicated from natural cores were used int he tilt test, results of friction angles showed almost perfect continuation of the residual friction angles from the direct shear test. However, when the gouge material existed in the discontinuity the internal friction angle strongly depended upon the rate of filling thickness to the height of asperity irrespective of the JRC. Based on the results of both direct shear test and tilt test internal friction angle and cohesion of discontinuity, which reflect the in-situ conditions fo pre-sliding failure and also can be used for the optimum design of support system, were assessed. Two kinds of support measures which were expected to increase the stability of rock slope were considered; lowering of slope face angle and installation of rock cable. But, it was found that the first method might lead to more unstable conditions of rock slope when the cohesion of discontinuity plane was negligibly low and in that case the support systems of any kind which could exert actual resisting force were needed to ensure the permanent stability of rock slope.

  • PDF

모래지반내의 연직 지반앵커 표면의 마찰각 (Friction Angle on the Surface of Vertical Ground Anchor in Sand)

  • 임종철
    • 한국지반공학회지:지반
    • /
    • 제11권4호
    • /
    • pp.99-110
    • /
    • 1995
  • 본 연구에서는 정규압밀 건조 모래 지반내의 연직 강체 지반앵커에 대한 모형 인발실험을 실시해서 앵커 표면의 마찰각을 실측했다. 마찰각은 앵커 표면의 깊이 방향으로 설치된 다수의 2 방향 로드셀을 사용해서 측정된 수직응력, 전단응력으로 구했다. 실험은 평면변형률 앵커와 축대칭 앵커에 대해서 실시했는데 실험 분석 결과, 앵커표면의 최대마찰각은 평면변형률 압축시험에 의한 무신축방향의 면상의 응력경각의 최대치와 거의 일치한다는 것을 알았다. 이 결론은 모래의 강도 이방성과 구속압 의존성 등을 고려하여 얻은 것으로 앵커 표면 마찰각에 모래의 전단저항각을 적용해서 설계하면 위험측이 된다는 것도 알 수 있다.

  • PDF