• 제목/요약/키워드: friction dampers

검색결과 101건 처리시간 0.026초

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.

교량의 지진응답거동에 작용하는 액체점성감쇠기의 감쇠효과 분석 (Damping Effects of Fluid Viscous Dampers on the Seismic Response of Bridges)

  • 정상모;안창모
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.379-386
    • /
    • 2001
  • Fluid viscous dampers have been used as energy dissipators or STU's (Shock Transmission Unit) in earthquake resistant designs for bridges. Viscous dampers have many advantages compared to other friction type or visco-elastic type of dampers. They do neither increase internal pier forces due to their out of phase response, nor produce reaction forces at the low velocities associated with thermal movements. Therefore, they anable the super structure to restore itself perfectly after a severe movement dut to seismic excitations. This paper investigates the response of bridges designed with viscous dampers in regard to damping coefficients, properties of dampers, and arrangements of dampers. For this purpose, time-history dynamic analyses have been performed using a very simple model relevant to a typical bridge example. Based on the results, it presents some design duidelines on how to determine a proper damping ratio and on how to arrange dampers. In usual cases, damping coefficients corresponding to about 0.2-0.3 of damping ratios seem to be very effective in bridge designs.

  • PDF

Seismic performance of a rocking bridge pier substructure with frictional hinge dampers

  • Cheng, Chin-Tung;Chen, Fu-Lin
    • Smart Structures and Systems
    • /
    • 제14권4호
    • /
    • pp.501-516
    • /
    • 2014
  • The rocking pier system (RPS) allows the columns to rock on beam or foundation surfaces during the attacks of a strong earthquake. Literatures have proved that seismic energy dissipated by the RPS through the column impact is limited. To enhance the energy dissipation capacity of a RPS bridge substructure, frictional hinge dampers (FHDs) were installed and evaluated by shaking table tests. The supplemental FHDs consist of two brass plates sandwiched by three steel plates. The strategy of self-centering design is to isolate the seismic energy by RPS at the columns and then dissipate the energy by FHDs at the bridge deck. Component tests of FHD were first conducted to verify the friction coefficient and dynamic characteristic of the FHDs. In total, 32 shaking table tests were conducted to investigate parameters such as wave forms of the earthquake (El Centro 1940 and Kobe 1995) and normal forces applied on the friction dampers. An analytical model was also proposed to compare with the tested damping of the bridge sub-structure with or without FHDs.

Full-scale test of dampers for stay cable vibration mitigation and improvement measures

  • Zhou, Haijun;Xiang, Ning;Huang, Xigui;Sun, Limin;Xing, Feng;Zhou, Rui
    • Structural Monitoring and Maintenance
    • /
    • 제5권4호
    • /
    • pp.489-506
    • /
    • 2018
  • This paper reported test of full-scale cables attached with four types of dampers: viscous damper, passive Magneto-Rheological (MR) damper, friction damper and High Damping Rubber (HDR) damper. The logarithmic decrements of the cable with attached dampers were calculated from free vibration time history. The efficiency ratios of the mean damping ratios of the tested four dampers to theoretical maximum damping ratio were derived, which was very important for practical damper design and parameter optimization. Non-ideal factors affecting damper performance were discussed based on the test results. The effects of concentrated mass and negative stiffness were discussed in detail and compared theoretically. Approximate formulations were derived and verified using numerical solutions. The critical values for non-dimensional concentrated mass coefficient and negative stiffness were identified. Efficiency ratios were approximately 0.6, 0.6, and 0.3 for the viscous damper, passive MR damper and HDR damper, respectively. The efficiency ratio for the friction damper was between 0-1.0. The effects of concentrated mass and negative stiffness on cable damping were positive as both could increase damping ratio; the concentrated mass was more effective than negative stiffness for higher vibration modes.

붕괴하중을 받는 MR 댐퍼의 Bingham 모델을 이용한 저항성능 정해 (Exact Solution for Resistance Capacity utilizing Bingham Model of MR Dampers under Collapse Load)

  • 성지영;민경원;김진구
    • 한국소음진동공학회논문집
    • /
    • 제21권3호
    • /
    • pp.234-240
    • /
    • 2011
  • This study deals with progressive collapse of a structure retrofitted with MR dampers. In order to assess their effect of mitigation which prevents progressive collapse, control force ratio is defined by friction force of MR dampers divided by external force. First, simple model of a structure with MR dampers is suggested. Using the model, exact solution with the control force ratio is obtained. When and where the system is stopped is predicted by the derived solution. Through the dissipated energy by MR dampers during collapse event, equivalent damping ratio is derived. Finally, comparison of exact and equivalent solutions is presented.

건축구조물의 층전단력 분포에 기초한 마찰감쇠기의 최적설계 (Optimal Design of Friction Dampers based on the Story Shear Force Distribution of a Building Structure)

  • 이상현;민경원;박지훈;이루지
    • 한국지진공학회논문집
    • /
    • 제9권6호
    • /
    • pp.21-30
    • /
    • 2005
  • 본 연구에서는 지진하중을 받는 탄성구조물을 대상으로 층전단력 분포에 기초한 마찰감쇠기의 설계방법을 제시하였다. 먼저 마찰감쇠기의 슬립하중(slip-load)을 정규화하는 방법 별로 단자유도 시스템의 수치해석을 수행하고 비교하였다. 이를 통해 슬립하중과 가새 강성의 영향을 파악하였으며, 설치용 가새와 원구조물의 최적강성비를 찾았다. 다음으로는 다양한 고유주기와 층수를 갖는 구조물을 대상으로 수치해석을 통해 마찰감쇠기의 설치 층수와 위치의 결정방법 및 슬립하중의 분배 방법을 도출하였다. 이 과정에서 설치 층수가 포함된 성능지수를 사용하여 슬립하중의 총합으로부터 최적의 설치 층수를 도출하는 경험식을 제시하였다. 마지막으로 실제 지진하중을 사용한 수치해석을 통해 기존의 최적설계 방법과 비교하여 제안된 방법의 우수성을 입증하였다.

Seismic retrofit of structures using added steel column friction dampers

  • Mohammad Mahdi Javidan;Asad Naeem;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • 제49권3호
    • /
    • pp.257-270
    • /
    • 2023
  • In this study, the feasibility and applicability of a friction damper with a vertical installation scheme are investigated. This device is composed of a steel section and two friction hinges at both ends which dissipate seismic energy. Due to its small width and vertical installation scheme, the proposed damper can minimize the interference with architectural functions. To evaluate the performance of the proposed damper, its mechanical behavior is theoretically evaluated and the required formulas for the yield strength and elastic stiffness are derived. The theoretical formulas are verified by establishing the analytical model of the damper in the SAP2000 software and comparing their results. To further investigate the performance of the developed damper, the provided analytical model is applied to a 4-story reinforced concrete (RC) structure and its performance is evaluated before and after retrofit under the Maximum Considered Earthquake (MCE) hazard level. The seismic performance is thoroughly evaluated in terms of maximum interstory drift ratio, displacement time history, residual displacement, and energy dissipation. The results show that the proposed damper can be efficiently used to protect the structure against seismic loads.

Performance-based seismic design of a spring-friction damper retrofit system installed in a steel frame

  • Masoum M. Gharagoz;Seungho Chun;Mohamed Noureldin;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.173-183
    • /
    • 2024
  • This study investigates a new seismic retrofit system that utilizes rotational friction dampers and axial springs. The retrofit system involves a steel frame with rotational friction dampers (RFD) at beam-column joints and linear springs at the corners, providing energy dissipation and self-centering capabilities to existing structures. The axial spring acts as a self-centering mechanism that eliminates residual deformations, while the friction damper mitigates seismic damage. To evaluate the seismic performance of the proposed retrofit system, a series of cyclic loading tests were carried out on a steel beam-column subassembly equipped with the proposed devices. An analytical model was then developed to validate the experimental results. A performance point ratio (PPR) was presented to optimize the design parameters of the retrofit system, and a performance-based seismic design strategy was developed based on the PPR. The retrofit system's effectiveness and the presented performance-based design approach were evaluated through case study models, and the analysis results demonstrated that the developed retrofit system and the performance-based design procedure were effective in retrofitting structures for multi-level design objectives.

에너지 소산형 감쇠기를 이용한 철근콘크리트 전단벽-골조 시스템의 진동제어 (Vibration Control of Shear Wall-Frame System using Energy Dissipation Devices)

  • 박지훈;김길환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.578-581
    • /
    • 2007
  • In this study, the seismic control performance of energy dissipation devices installed in a shear all-frame structure is investigated through nonlinear time history analysis of a 12-story building. Inelastic shear walls are modeled using the multiple vertical line element model (MVLEM) and inelastic columns and girders were modeled using fiber beam elements. For a seismic load increased by 38% compared to the design load, the seismic control performance was analyzed based on the results of a nonlinear time history analysis in terms of the inter-story drift, the story shear and the flexural strain. Friction type dampers was found to performs best if they are installed in the form of a brace adjacent to the shear wall with the friction force of 15 % of the maximum story shear force induced in the original building structure without dampers.

  • PDF

MR감쇠기가 설치된 구조물의 등가선형 시스템에 대한 가진 특성의 영향 (Effects of excitation characteristics on the equivalent linear system of a building structure with MR dampers)

  • 박지훈;민경원;문병욱;박은천
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.503-510
    • /
    • 2006
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with an MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with an MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed.

  • PDF