• 제목/요약/키워드: friction bearings

검색결과 225건 처리시간 0.032초

왕복동식 압축기 저널 베어링부의 마찰손실 측정 (Measurements of Friction Losses at Journal Bearings in a Reciprocating Compressor)

  • 박성환;김영환;박상신
    • Tribology and Lubricants
    • /
    • 제26권4호
    • /
    • pp.224-229
    • /
    • 2010
  • A new test rig is presented to measure friction losses at journal bearings in a reciprocating compressor. This rig consists of a test bearing, torque sensor, driving motor and loading parts especially for vertical shaft. Friction losses are obtained by measuring torque between motor and test bearing. The experiments are carried out at several rotational speeds and temperatures. The test results are presented and discussed.

이중범프포일 공기베어링의 성능에 미치는 마찰효과 (Friction Effects on the Performance of Double-Bumped Air Foil Bearings)

  • 김영철;이동현;김경웅
    • Tribology and Lubricants
    • /
    • 제23권4호
    • /
    • pp.162-169
    • /
    • 2007
  • This paper deals with friction effects on the performance of double-bumped AFBs. The stiffness and damping coefficients of the double bump vary depending on the external load and its friction coefficient. The double bump can be either in the single or double active region depending on vertical deflection. The equivalent stiffness and damping coefficients of the bump system are derived from the vertical and horizontal deflection of the bump, including the friction effect. A static and dynamic performance analysis is carried out by using the finite difference method and the perturbation technique. The results of the performance analysis for a double-bumped AFB are compared with those obtained for a single-bumped AFB. This paper successfully proves that a double bumped AFB has higher load capacity, stiffness, and damping than a single-bumped AFB in a heavily loaded condition.

고속 앵귤러 콘택트 볼베어링의 마찰 토크 및 윤활 특성 (Characteristics of Friction Torques and Lubrication in High Speed Angular Contact Ball Bearings)

  • 반종억;김경웅
    • Tribology and Lubricants
    • /
    • 제13권4호
    • /
    • pp.47-52
    • /
    • 1997
  • Friction torques, electrical contact resistances and bearing temperatures were measured on high speed angular contact ball beatings for the spindle of machine tools. The test bearings ran with oil-air lubrication at the thrust loads from 320 N to 1920 N and at the rotational speed of up to 12000 rpm. Electrical contact resistances between balls and races were measured to evaluate the formation of the lubricant film in the contact area. The test results with sufficient lubrication showed that the variations of friction torques were sensitive to the thrust loads and the rotational speeds, and that the friction torques were higher than those with insufficient lubrication. With insufficient lubrication and high thrust loads, the collapse of the lubricant film was detected even at a high rotational speed. It was concluded that these high speed beatings to run in condition of fluid lubrication should require monitoring not only the temperature increase of the bearing but also the lubricant film formation in contact areas resulting from the change in the applied load and the lubricant amount.

Shaking table experiment on a steel storage tank with multiple friction pendulum bearings

  • Zhang, Ruifu;Weng, Dagen;Ge, Qingzi
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.875-887
    • /
    • 2014
  • The aim of the shaking table experiment is to verify the isolation effect of a storage liquid tank with multiple friction pendulum bearings. A 1:20 scale model of a real storage liquid tank that is widely used in the petroleum industry was examined by the shaking table test to compare its anchored base and isolated base. The seismic response of the tank was assessed by employing the time history input. The base acceleration, wave height and tank wall stress were used to evaluate the isolation effect. Finally, the influences of the bearing performance that characterizes the isolated tank, such as the friction force and residual displacement, were discussed.

Full-scale tests and analytical model of the Teflon-based lead rubber isolation bearings

  • Wang, Lu;Oua, Jin;Liu, Weiqing;Wang, Shuguang
    • Structural Engineering and Mechanics
    • /
    • 제48권6호
    • /
    • pp.809-822
    • /
    • 2013
  • Base isolation is widely used in seismic resisting buildings due to its low construction cost, high reliability, mature theory and convenient usage. However, it is difficult to design the isolation layer in high-rise buildings using the available bearings because high-rise buildings are characterized with long period, low horizontal stiffness, and complex re-distribution of the internal forces under earthquake loads etc. In this paper, a simple and innovative isolation bearing, named Teflon-based lead rubber isolation bearing, is developed to address the mentioned problems. The Teflon-based lead rubber isolation bearing consists of friction material and lead rubber isolation bearing. Hence, it integrates advantages of friction bearings and lead rubber isolation bearings so that improves the stability of base isolation system. An experimental study was conducted to validate the effectiveness of this new bearing. The effects of vertical loading, displacement amplitude and loading frequency on the force-displacement relationship and energy dissipation capacity of the Teflon-based lead rubber isolation bearing were studied. An analytical model was also proposed to predict the force-displacement relationship of the new bearing. Comparison of analytical and experimental results showed that the analytical model can accurately predict the force-displacement relationship and elastic shear deflection of the Teflon-based lead rubber isolation bearings.

실험식을 이용한 공작기계 주축용 앵귤러 콘택트 볼 베어링의 마찰토크에 관한 연구 (Study on the Frictional Torque in the Angular Contact Ball Bearing for Machine Tool Spindle by Empirical Formula)

  • 김강석;황주호;이득우;이상민;이승준
    • 한국정밀공학회지
    • /
    • 제32권2호
    • /
    • pp.149-157
    • /
    • 2015
  • Ball and roller bearings are commonly used machine elements for supporting rotating motion about shafts in simple devices including bicycles, in-line skates, and electric motors, as well as in complex machines. Heat is generated by the friction in the bearings, which causes the temperature inside the bearing to increase. If the heat is not appropriately removed from the bearing, elevated temperatures may give rise to premature failure. It is, therefore, important to be able to calculate the temperature in the bearings due to friction.Here, we describe a method to estimate the frictional torque in bearings using an empirical formula developed using a method based on bearing analysis tool and the measured frictional torque in a spindle system. Thermal analysis of the spindle system including the bearings was achieved using the finite element method (FEM), and the bearing temperature was compared with measured data to verify the empirical formula.

승용차 자동변속기용 테이퍼 롤러 베어링의 효율개선 연구 (A Study on Efficiency of Tapered Roller Bearing for an Automatic Transmission)

  • 이인욱;한성길;신유인;송철기
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.30-36
    • /
    • 2018
  • Automotive fuel efficiency regulations and air pollution control are hot issues of recent years in the automotive industry. To solve these regulation problems, many studies are continuing to improve the transmission efficiency of transmissions. Tapered roller bearings are useful to improve the transmission efficiency in the recent automobile parts. The frictional losses in the tapered roller bearings are mainly composed of the rolling friction and the sliding friction, and are dependent upon the load, the lubrication, the rotation speed of bearings, and etc. In this paper, the operating conditions of the transmission are defined and then the power losses of each bearing are calculated. In addition, improvement options are suggested after identifying the design factors influenced much by the improvement effect of power loss under the operating conditions of each bearing. We compare the power losses of the entire transmission system due to bearing improvements by comparing the friction losses between the original design and the improved design. Lastly, it is shown that the calculated power losses are valid by comparing the test values and the theoretical values for the frictional torque characteristics of the original and improved bearings.

The effect of impact with adjacent structure on seismic behavior of base-isolated buildings with DCFP bearings

  • Bagheri, Morteza;Khoshnoudiana, Faramarz
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.277-297
    • /
    • 2014
  • Since the isolation bearings undergo large displacements in base-isolated structures, impact with adjacent structures is inevitable. Therefore, in this investigation, the effect of impact on seismic response of isolated structures mounted on double concave friction pendulum (DCFP) bearings subjected to near field ground motions is considered. A non-linear viscoelastic model of collision is used to simulate structural pounding more accurately. 2-, 4- and 8-story base-isolated buildings adjacent to fixed-base structures are modeled and the coupled differential equations of motion related to these isolated systems are solved in the MATLAB environment using the SIMULINK toolbox. The variation of seismic responses such as base shear, displacement in the isolation system and superstructure (top floor) is computed to study the impact condition. Also, the effects of variation of system parameters: isolation period, superstructure period, size of seismic gap between two structures, radius of curvature of the sliding surface and friction coefficient of isolator are contemplated in this study. It is concluded that the normalized base shear, bearing and top floor displacement increase due to impact with adjacent structure. When the distance between two structures decreases, the base shear and displacement increase comparing to no impact condition. Besides, the increase in friction coefficient difference also causes the normalized base shear and displacement in isolation system and superstructure increase in comparison with bi-linear hysteretic behavior of base isolation system. Totally, the comparison of results indicates that the changes in values of friction coefficient have more significant effects on 2-story building than 4- and 8-story buildings.

CFD를 이용한 수윤활 볼베어링의 구름 요소 주위의 마찰 토크분석 (CFD-Based Flow Analysis of Rolling Elements in Water-Lubricated Ball Bearings)

  • 조준현;김충현
    • Tribology and Lubricants
    • /
    • 제29권4호
    • /
    • pp.218-222
    • /
    • 2013
  • Water-lubricated ball bearings consist of rolling elements, an inner raceway, an outer raceway, a retainer, and an operating lubricant. In the water environment, ball bearings are required to sustain high loads at high speeds under poorly lubricated conditions. For the analysis of bearing behavior, friction torque is considered as the main factor at various flow rates, rotating speeds, and roughnesses between the rolling element and raceways. When the bearing operates at high rotating speeds, the friction torque between the raceway and rolling elements increases considerably. This frictional torque is an important factor affecting bearing reliability and life cycle duration. For understanding the flow conditions in the inner part of the bearing, this study focuses on the flow around the rotating and revolving rolling elements. A simple model of fluid flow inside the ball bearing is designed using the commercial CFD program ANSYS.

베어링 Span을 고려한 저널 베어링의 동특성 해석 (Dynamic Characteristics of Journal Bearings Considering Bearing Span)

  • 윤진욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.906-910
    • /
    • 2003
  • This paper numerically analyzes the dynamic characteristics of a spindle system supported by two identical journal bearings considering bearing span that has dynamic load due to its mass unbalance. The Reynolds equation is transformed to solve a herringbone grooved journal bearing. The Reynolds equations are solved using FEM in order to calculate the pressure distribution in a fluid film. Reaction forces and friction torque are obtained by integrating the pressure and shear stress along the fluid film, respectively. Dynamic behaviors, such as whirl radius or angular displacement of a rotor, are determined by solving its nonlinear equations of motion with the Runge-Kutta method. This research shows that the same bearing spans of upper and lower journal bearings produce the minimum runout and friction torque of a spindle system.

  • PDF