• Title/Summary/Keyword: friction area

Search Result 592, Processing Time 0.024 seconds

Development of a Surface Shape for the Heat Transfer Enhancement and Reduction of Pressure Loss in an Internal Cooling Passage (내부 냉각유로에서 열전달 강화와 압력손실 감소를 위한 표면 형상체의 개발)

  • Doo, Jeong-Hoon;Yoon, Hyun-Sik;Ha, Man-Yeong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2465-2470
    • /
    • 2008
  • A new surface shape of an internal cooling passage which largely reduces the pressure drop and enhances the surface heat transfer is proposed in the present study. The surface shape of the cooling passage is consisted of the concave dimple and the riblet inside the dimple which is protruded along the stream-wise direction. Direct Numerical Simulation (DNS) for the fully developed turbulent flow and thermal fields in the cooling passage is conducted. The Numerical simulations for the 5 different surface shapes are conducted at the Reynolds number of 2800 based on the mean bulk velocity and channel height and Prandtl number of 0.71. The driving pressure gradient is adjusted to keep a constant mass flow rate in the x direction. The thermo-aerodynamic performance for the 5 different cases used in the present study was assessed in terms of the drag, Nusselt number, Fanning friction factor, Volume and Area goodness factor in the cooling passage. The value of maximum ratio of drag reduction is -22.86 [%], and the value of maximum ratio of Nusselt number augmentation is 7.05 [%] when the riblet angle is $60^{\circ}$ (Case5). The remarkable point is that the ratio of Nusselt number augmentation has the positive value for the surface shapes which have over $45^{\circ}$ of the riblet angle. The maximum Volume and Area goodness factor are obtained when the riblet angle is $60^{\circ}$ (Case5).

  • PDF

Development of Numerical Model and Experimental Apparatus for Analyzing the Performance of a Ball Valve used for Gas Pipeline in Permafrost Area (극한지 자원이송망 볼밸브 수치모델 및 성능평가장치 개발)

  • Lee, Sang Moon;Jang, Choon Man
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.5
    • /
    • pp.550-559
    • /
    • 2014
  • Hydraulic performance of the 1 inch ball valve have been analyzed based on the three-dimensional Reynolds-averaged Navier-Stokes analysis and an experiment. The experimental test rig of the 1 inch ball valve has been developed to investigate pressure drop for the 1 inch ball valve. The numerical model, which has reliability and effectiveness, has been constructed through the grid dependency test and validation with the results of the experiment. Shear stress transport turbulence model has been used to enhance an accuracy of the turbulence prediction in the pipeline and ball valve, respectively. Effects of the ball valve angle on the flow characteristics and friction performance have been evaluated.

개별요소법을 이용한 핵석층의 물성 산정 : 화강암질 편마암 지역에 분포하는 핵석층의 예

  • Yu, Seung-Hak;Park, Yeong-Do;Kim, Gi-Seok;Park, Hyeon-Ik;Seo, Yeong-Ho;Park, Yeon-Jun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.03a
    • /
    • pp.130-139
    • /
    • 2007
  • We have carried out numerical compression experiments to estimate the mechanical properties (Mohr-Coulomb and elastic) of corestone-bearing saprolites in Beolgyo area. The studied saprolite, consisting of mechanically much stronger corestone and weaker matrix, is a weathering product of the Precambrian granitic gneiss in the Youngnam massif. Since the saprolite consists of larger corestones with diameter up to 2m, it is impossible to directly measure the mechanical properties by physical experiments. We have measured the mechanical properties of corestone and matrix from naturally occurring saprolite and have used them as a reference for our numerical model. Then, we mixed each material and carried out biaxial compression tests while varying the volume percentage of corestones from 0 to 57%. We found that both cohesion and internal friction angle increase with the volume percentage of corestones while elastic modulus remains constant. We found the results from numerical experiments are in contradiction to what is known from physical experiments using artificial saprolites. This may be due to a possibility that the sharp and discrete nature of interface between corestone and matrix in physical experiments differs from the gradual interfacial nature in numerical modelling and natural saprolites.

  • PDF

Estimation of Surface Forces in Micro Rough Surface Contacts

  • Kim, Doo-In;Ahn, Hyo-Sok;Choi, Dong-Hoon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.63-64
    • /
    • 2002
  • In a micro-scale contact, surface forces such as capillary force and van der Waals Interaction significantly Influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (hydrophilicity), relative humidity and deformation of asperities In the real area of contact. A better understanding of these surface forces is of great necessity in order to find an optimal solution for reducing friction and adhesion of micro surfaces. We proposed an effective method to analyze capillary and van der Waals forces In nano-scale contact. In this method, Winklerian foundation model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height Images. Self-mated contact of diamond-like-carbon (DLC) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidify and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

  • PDF

Unsteady Analysis of the Conduction-Dominated Three-Dimensional Close-Contact Melting (열전도가 주도적인 삼차원 접촉융해에 대한 비정상 해석)

  • Yoo, Hoseon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.945-956
    • /
    • 1999
  • This work reports a set of approximate analytical solutions describing the initial transient process of close-contact melting between a rectangular parallelepiped solid and a flat plate on which either constant temperature or constant heat flux is imposed. Not only relative motion of the solid block tangential to the heating plate, but also the density difference between the solid and liquid phase is incorporated in the model. The thin film approximation reduces the force balance between the solid weight and liquid pressure, and the energy balance at the melting front into a simultaneous ordinary differential equation system. The normalized model equations admit compactly expressed analytical solutions which include the already approved two-dimensional solutions as a subset. In particular, the normalized liquid film thickness is independent of all pertinent parameters, thereby facilitating to define the transition period of close-contact melting. A unique behavior of the solid descending velocity due to the density difference is also resolved by the present solution. A new geometric function which alone represents the three-dimensional effect is introduced, and its properties are clarified. One of the representative results is that heat transfer is at least enhanced at the expense of the increase in friction as the cross-sectional shape deviates from the square under the same contact area.

Knitting Parameters on Lint Pollution during Knitting Process (니팅공정오염에 대한 니팅요소 분석)

  • Koo Young-Seok
    • Textile Coloration and Finishing
    • /
    • v.18 no.3 s.88
    • /
    • pp.59-64
    • /
    • 2006
  • Knifing parameters specially related to lint generation in the knitting zone such as knitting needles, yarn feed angle and yarn feed speed were investigated with a developed test rig, which simulated the hutting area on the knitting machine. Three different types of needle counts and feeding angles affected tension and the amount of lint that was caused by frictional forces between the yarn and the morphological structure of the needle. However, the yarn feed speed did not affect the lint generation. The results implied that a more advanced test rig was necessary for further study. Also, chemical and mechanical modifications of the kilting elements may be necessary to improve the lint problem.

An investigation of tribology properties carbon nanotubes reinforced epoxy composites (표면 개질된 탄소나노튜브를 사용한 에폭시 복합재료의 마모특성에 관한 연구)

  • Sulong A.B.;Goak J.C.;Park Joo-Hyuk
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.663-667
    • /
    • 2005
  • Surface modified carbon nanotubes were applied into the epoxy composites to investigate its tribological property. Carbon nanotubes reinforced epoxy composites were fabricated by casting. Effects to the tribological property of loading concentrations and types of surface modification of carbon nanotubes were investigated under sliding condition using linear reciprocal sliding wear tester. The results show that the small amount of carbon nanotubes into the epoxy exhibited lower weight loss than the pure epoxy. It is concluded that the effect of an enormous aspect ratio of carbon nanotubes surface area which wider than conventional fillers that react as interface for stress transfer. As increased the contents of carbon nanotubes, the weight loss from the wear test was reduced. And the surface modified carbon nanotubes show better tribological property than as produced carbon nanotubes. It is due that a surface modification of carbon nanotubes increases the interfacial bonding between carbon nanotubes and epoxy matrix through chemical bonding. Changes in worn surface morphology are also observed by optical microscope and SEM for investigating wear behaviors. Carbon nanotubes in the epoxy matrix near the surface are exposed, because it becomes the lubricating working film on the worn surface. It reduces the friction and results in the lower surface roughness morphology in the epoxy matrix as increasing the contents of the carbon nanotubes.

  • PDF

Rigid-Plastic Finite Element Approach to Hydroforming Process and Its Application (하이드로 포밍 성형공정 해석을 위한 강소성 유한요소 프로그램 개발 및 적용)

  • 강범수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.22-28
    • /
    • 2000
  • By using the finite element method, the Oyane's ductile fracture integral I was calculated from the histories of stress and strain according to every element and then the forming limit of hydroforming process could be evaluated. The fracture initiation site and the forming limit for two typical hydroforming processes, tee extrusion and bumper rail under different forming conditions are predicted in this study. For tee extrusion hydroforming process, the pressure level has significant influence on the forming limit. When the expansion area is backed by a supporter and bulged, the process would be more stable and the possibility of bursting failure is reduced. For bumper rail, the ductile fracture integral i is not only affected by the process parameters, but also by the shape of preforming blank. Due to no axial feeding on the end side of the blank, the possibility of cracking in hydroforming of the bumper rail is influenced by the friction condition more strongly than that of the tee extrusion. All the simulation results show reasonable plastic deformation, and the applications of the method could be extended to a wide range of hydroforming processes.

  • PDF

Effect of Cutting Fluid on the Metal-Cutting Mechanism (절삭유제가 금속절삭기구에 미치는 영향에 관한 연구)

  • Seo, Nam-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.2 no.2
    • /
    • pp.69-75
    • /
    • 1985
  • The object of this study is to discuss the effect of cutting fluid on the mechanism of chip formation in orthogonal cutting. Rehbinder effect has been known as a phenomenon, the reduction of mechanical strength, when the metal is exposed in a polar organic environment or the surface of metal is coated with some polar organic substances. About the cause of Rehbinder effect there have been many different ideas by Rehbinder, Merchant, Shaw, Sakakida and etc. In this report, the effects of surface active medium (magic ink) upon the mechanism of chip formation on the orthogonal cutting of copper and the mechanical properties of the work material are experimentally discussed with constant rake angle. Under the condition of polar organic environment the experimental results are as follows; 1) The chip thickness becomes thinner and slip line pitch on the free surface of chip becomes smaller than that of dried cutting area. 2) The order of alternation of cutting ratio was changed. 3) The friction angle on the tool face is not affected by the depth of cut. 4) The cutting force and shear strain on the shear plane decrease remarkably, therefore the work material must be embrittled under polar organic environment.

  • PDF

The lubrication Characteristics of a Rotary Compressor used for Refrigeration and Air-conditioning Systems Park II: Analysis of elastohydrodynamic lubrication on vane tip (냉동${\cdot}$공조용 로터리 콤프레서의 윤활 특성 제2보:베인 선단부의 탄성 유체 윤활 특성 해석)

  • Cho, Ihn-Sung;Oh, Seok-Hyung;Jung, Jae-Youn
    • Tribology and Lubricants
    • /
    • v.13 no.1
    • /
    • pp.62-69
    • /
    • 1997
  • Rapid increase of refrigeration and air-conditioning systems 9r & a systems) in modern industries brings attention to the urgency of research & development as a core technology in the area. And it is required to the compatibility problem of r & a systems to alternative refrigerant for the protection of environment. The, it is requested to study the lubrication characteristics of refrigerant compressor which is the core technology in the r & a systems. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressor. Therefore, theoretical investigation of the lubrication characteristics of rotary compressor for r & a systems is studied. The newton-Raphson method is used for the EHL analysis between vane and rolling piston in the rotary compressor. The results show that the rotational speed of a shaft and the discharge pressure influence significantly the friction force between vane and rolling piston. This results give important basic data for the further lubrication analysis and design of a rotary compressor.