• 제목/요약/키워드: friction and wear tests

Search Result 239, Processing Time 0.021 seconds

Wear Properties of Epoxy Matrix Nanocomposites (에폭시 기지 나노복합재료의 마모 특성)

  • Kim, J.D.;Kim, H.J.;Koh, S.W.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.83-88
    • /
    • 2010
  • The wear behavior of epoxy matrix composites filled with nano sized silica particles is discussed in this paper. Especially, the variation of the coefficient of friction and the wear resistance according to the change of apply load and sliding velocity were investigated for these materials. Wear tests of pin-on-disc mode were carried out and the wear test results exhibited as following ; The epoxy matrix composites showed lower coefficient of friction compared to the neat epoxy through the whole sliding distance. As increasing the sliding velocity the epoxy matrix composites indicated lower coefficient of friction, whereas the neat epoxy showed higher coefficient of friction as increasing the sliding velocity. The specific friction work of both materials were increased with apply load. In case of the epoxy matrix composites, the running in periods of friction were reduced as increase in apply load. The epoxy matrix composites were improved the wear resistance by adding the nano silica particles remarkably. It is expected that the load carrying capacity of the epoxy matrix composites will be improved by increase of Pv factor.

Diamond-like Carbon Tribological Endurance using an Energetic Approach

  • Alkelae, Fathia;Jun, Tea-Sung
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.179-188
    • /
    • 2021
  • Reputed for their low friction coefficient and wear protection effect, diamond-like carbon (DLC) materials are considered amongst the most important lubricant coatings for tribological applications. In this framework, this investigation aims to elucidate the effect of a few operating parameters, such as applied stress and sliding amplitude on the friction lifetime of DLC coatings. Fretting wear tests are conducted using a 12.7 mm radius counterpart of 52100 steel balls slid against a substrate of the same material coated with a 2 ㎛ thickness DLC. Approximately, 5 to 57 N force is applied, generating a maximum Hertzian contact pressure of 430 to 662 MPa, corresponding to the applied force. The coefficient of friction (CoF) generates three regimes, first a running-in period regime, followed by a steady-state evolution regime, and finally a progressive increase of the CoF reaching the steel CoF value, as an indicator of reaching the substrate. To track the wear scenario, interrupted tests are performed with analysis combining scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), 3D profilometer and micro-Raman spectroscopy. The results show two endurance values: one characterizing the coating failure (Nc1), and the other (Nc2) indicating the friction failure which is situated where the CoF reaches a threshold value of μth = 0.3 in the third regime. The Archard energy density factor is used to determine the two endurance values (Nc1, Nc2). Based on this approach, a master curve is established delimitating both the coating and the friction endurances.

Wear Behaviours of Dental Composite Resins Containing Prepolymerized Particle Fillers (1st Report) (有機複合필러를 包含하는 齒科用 콤포짓트 레진의 磨耗擧動(제1보))

  • 임정일;김교한;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.124-130
    • /
    • 1998
  • The wear characteristics and wear mechanisms of dental composite resins were investigated. Composite resins such as Metalii, Silux Plus, Heliomolar and Palfique Estelite were selected as specimens and contents of filler in specimens in order to analyze the effect of Prepolymerized Particle Fillers in friction and wear characteristics. Ball on flat wear tester was used for a wear test. Friction and wear tests are carried out at room temperature. The friction coefficient of Metafil was quite high relatively, and the wear resistance of Silux Plus and Palfique Estelite was better than that of Metafil and Hellomolar at the same experimental condition. The main wear mechanism is plastic flow and abrasive wear by crack propagation.

  • PDF

A Study on Friction and Wear Characteristics of Sintered W/C-35%Ni Tappets for Diesel Engine Application (디젤엔진용 소결(W/C35%Ni) 태핏의 마멸거동에 관한 연구)

  • 류병진;오세일;박맹로;양승호
    • Tribology and Lubricants
    • /
    • v.16 no.1
    • /
    • pp.33-38
    • /
    • 2000
  • Abstract- In this paper tribological characteristics of solid and liquid phase sintered W/C-35%Ni tappets were investigated. Three test methods were performed to investigate the wear and surface damage mechanism of sintered tappets. First, block-on-ring wear test was performed to investigate the wear characteristics under pure sliding condition. Second, simplified cam and tappet tests (called component wear test hereafter) were carried out to simulate the real contact history of cam and tappet. Also, after the test, contact surfaces were analyzed with scanning electron microscope to study the wear mechanism. As a final screening, engine dynamo tests were performed. Results showed that in the block on ring sliding wear test, solid phase sintered specimens showed superior wear resistance to liquid phase sintered specimens. The component wear tests and engine dynamo tests also showed the same results. Therefore, in these tests, solid phase sintered tappet material revealed superior wear resistant properties to liquid phase sintered one.

Comparison of Friction and Wear Characteristics of Thin Film Coatings Using Tribotesters at Atmospheric/Vacuum Conditions (대기압/진공 조건의 트라이보 시험기를 이용한 박막 코팅의 마찰/마모 특성 비교)

  • Kim, Hae-Jin;Kim, Dae-Eun;Kim, Chang-Lae
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.389-395
    • /
    • 2019
  • In various industries, thin film coatings are used to improve friction and wear characteristics. Various types of tribotesters are used to evaluate the friction and wear characteristics of such thin film coatings. In this study, we fabricated a micro-tribotester and Tribo-scanning electron microscopy (SEM) to compare the friction and wear characteristics of copper (Cu) coatings under an atmospheric pressure and a vacuum condition, respectively. The reliability of the different types of tribotesters was evaluated by performing calibrations for the sensor to measure the friction forces and normal loads. Using the two different types of devices, the friction and wear tests are conducted at the same experimental conditions excluding environment conditions such as the atmospheric pressure and vacuum condition. The friction coefficient at the vacuum condition is lower than at the atmospheric pressure. This difference in friction characteristics is due to the fact that wear phenomena occur differently according to the atmospheric pressure and vacuum condition. At the atmospheric pressure, the abrasive wear is the main wear mechanism. At the vacuum condition, the adhesive wear is the main wear mechanism. The reason for the difference in the wear mechanism of the Cu coating at the atmospheric pressure and the vacuum condition is that the oxidation phenomenon, which does not appear at the vacuum condition, occurs at the atmospheric pressure; therefore, the characteristics of the Cu coating change accordingly.

Study on Tribological Characteristics of Machine Component in Boundary Lubrication (경계윤활에서 기계 부품 소재의 트라이볼로지적 특성에 관한 연구)

  • Kim, Myeong-Gu;Seo, Kuk-Jin;Nam, Jahyun;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.356-361
    • /
    • 2019
  • The friction and wear between machine components directly influence the energy loss and failure in various machines. Therefore, there is always a demand for finding methods to reduce friction and wear. Of the possible methods, lubrication is a widely used method for reducing friction and wear. In the case of lubrication, it is important to analyze the tribological behavior in the boundary lubrication because most of friction and wear occurs in the boundary lubrication regime. Cast iron has been regarded as a good material for industrial applications due to the excellent mechanical properties and high productivity. Especially, nodular cast iron is a material that shows better mechanical properties and wear-resistance compared with cast iron due to inclusion of spheroidal graphite. In this work, we investigated the tribological characteristics of nodular cast iron with respect to different counter parts in boundary lubrication regime. Sliding tests were conducted with SUJ2, ZrO2, Si3N4 balls as counter parts using a pin-on-disk type tribotester. The results showed different friction and wear behaviors with different counter parts. The case of ZrO2 showed the lowest wear rate in specimen and no significant ball wear. In case of SUJ2, it showed similar wear rate with ZrO2 case in specimen and the highest friction coefficient. The case of Si3N4 showed the lowest friction coefficient, 33% lower than the case of SUJ2. It showed 16.9 times larger wear rate in specimen and 43% larger wear rate in ball compared to that of the SUJ2 case.

The Characteristics of Friction and Wear for Automotive Leaf Spring Materials (자동차용 Leaf 스프링 재질의 마찰 및 마멸 특성)

  • 오세두;안종찬;박순철;정원욱;배동호;이영제
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.321-328
    • /
    • 2003
  • In the present study, the residual stresses can have a significant on the life of structural engineering components. Residual stresses are created by the surface treatment such as shot peening or deep rolling. The objective of this experimental investigation is to study the influence of friction and wear characteristics due to residual stress under dry sliding condition. Friction and wear data were obtained with a specially designed tribometer. Test specimens were made of SUP9 (leaf spring material) after they were created residual stress by shot peening treatment. Residual stress profiles were measured at surface by means of the X­ray diffraction. Sliding tests were carried out different contact pressure and same sliding velocity 0.035 m/s (50 rpm). Leaf spring assembly test used to strain gauge sticked on leaf spring specimen in order to measure interleaf friction of leaf spring. Therefore, we were obtained hysteresis curve. As the residual stresses of surfaces increased, coefficient of friction and wear volume are decreased, but the residual stresses of surfaces are high, and consequently wear volume do not decreased. Coefficient of friction obtained from leaf spring assembly test is lower than that obtained from sliding test. From the results, structural engineering components reduce coefficient of friction and resistant wear in order to have residual stresses themselves.

A Study of Sliding Friction and Wear Properties for PTFE Layer coated on Steel (철강재료위 coating된 PTFE 막층의 미끄럼 마찰마모특성 연구)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.24 no.2
    • /
    • pp.96-103
    • /
    • 2008
  • PTFE is generally utilized as the form of composites with adding various fillers. The purpose of this paper lies on clarifying the friction and wear properties of the PTFE coating layer on steel. Especially, the effects of PTFE powder size for coating and surface roughness of the counter material on the properties are investigated. Sliding friction and wear tests are conducted at several sliding speeds by employing two types of PTFE coating layer using different powder sizes. One type of coating layer is composed of uniform fine powder, whereas the other type is made up of mixture powder of different sizes. As results, it is found that PTFE coating layer are effective to improve the wear resistance and to reduce the friction coefficient. It is clear that PTFE coating layers are abrasively removed by asperities of the counter material during sliding contact. However, PTFE coating layer with uniform fine powder shows somewhat better wear resistance than that with mixture powder of different sizes in low sliding speed region. It can be seen that the wear of the coating layer are drastically reduced because wear fragment from counter material are transferred to the coating layer. On the other hand, friction coefficient is shown not to be directly related with PTFE powder size in coating layer.

Frictional and Wear Characteristics of Non-Asbestos Materials at Elevated Temperature (고온에서 비석면 마찰재의 마찰$cdot$마모특성)

  • 안병길;최웅수;권오관
    • Tribology and Lubricants
    • /
    • v.7 no.2
    • /
    • pp.61-66
    • /
    • 1991
  • The frictional and wear characteristics of non-asbestos friction materials made of four different fibers (carbon, aramid, ceramic and glass) have been investigated at elevated temperature using High Frequency Friction Tester. On the basis of the experimental results, friction and wear phenomena of four different non-asbestos fibers were caused by lattice layer film of carbon, polymeric transfer film of aramid, abrasion of ceramic and adhesion of glass fiber under each contact junction. The surface analysis of the worn specimens and counter parts after tests were observed using Scanning Electron Microscope and Optical Microscope.

Friction of the Gold-Alloy Dental Prosthesis (치과용 금합금-보철물의 마찰특성)

  • Choi, Won-Sik
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.44-48
    • /
    • 2008
  • The wear characteristics of the gold alloy dental prosthesis have been investigated. The wear tests were performed by using a pin-on-disk wear tester at room temperature. Vickers hardness and fracture toughness measurement of dental materials were preformed. Microscopic observations on worn surfaces of specimens were conducted by microscope. The friction coefficient of the gold alloy dental prosthesis was investigated according to weight and slinging velocity. The hardness of the gold alloy dental prosthesis were similar and a half of the enamel of natural teeth.