• Title/Summary/Keyword: friction, wear

Search Result 1,238, Processing Time 0.023 seconds

A Study on the Evaluation of the Friction and Wear Properties of the Sprayed Coating Layer (용사피막의 마찰.마모 특성 평가에 관한 연구)

  • 김영식;김윤해;김종호;최영국;강태영
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.66-74
    • /
    • 1996
  • In this study, friction and wear properties of flame sprayed specimens and hard Cr plating specimens were tested, and their properties were compared each other in dry and lubrication condition. Ni-Cr powder and steel powder were used as the spray powder and sprayed on the steel(S45C) substrate by flame sprayed method. Each wear surface was observed with SEM after friction and wear test. The friction coefficient of the as-forged steel specimens was the highest among surface treatment specimens, and the other specimens appeared in order as follows ; hard Cr-plating specimens, Ni-Cr powder sprayed specimens, steel powder sprayed specimens. Comparing the wear volumes in dry condition, as forged steel specimens appeared the greatest wear volume, and the other specimens appeared wear volume in order as follows ; Ni-Cr powder sprayed specimens, steel powder sprayed specimens, hard Cr plating specimens. In friction and wear test, the hard Cr plating specimens were worn by the abrasive phenomenon, involving the cracks. The wear volume of steel powder sprayed specimens was lower than that of Ni-Cr powder sprayed specimens. Comparing the tensile strength of both sprayed coating layers, the steel powder sprayed coating layer was better than Ni-Cr powder sprayed coating layer.

  • PDF

Friction, Wear and Scuffing Life of Piston Rings With Several Coating for Low Friction Diesel Enging (다양한 박막을 증착한 디젤 엔진용 피스톤링과 실린더 블록의 마찰 마멸 및 스커핑 수명 평가)

  • Ahn, Tae-Sik;Cho, Dae-Hyun;Oh, Chung-Soon;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.23 no.4
    • /
    • pp.170-174
    • /
    • 2007
  • Wear and scuffing tests were conducted using friction and wear measurement of piston rings and cylinder blocks in low friction diesel engine. The frictional forces, wear amounts and cycles to scuffing in boundary lubricated sliding condition were measured using the reciprocating wear tester. The cylinder blocks were used as reciprocating specimens, and the piston rings with several coatings were used as fixed pin. Several coatings were used such as DLC, TiN, Cr-ceramic and TiAlN in order to improve the tribological characteristics. From the tests wear volume of piston ring surfaces applied various coatings were compared. During the tests coefficients of friction were monitored. Test results showed that DLC coatings showed good tribological properties. TiN and Cr-ceramic coated rings showed good wear resistance properties but produced high friction.

Wear Properties of Epoxy Matrix Nanocomposites (에폭시 기지 나노복합재료의 마모 특성)

  • Kim, J.D.;Kim, H.J.;Koh, S.W.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.83-88
    • /
    • 2010
  • The wear behavior of epoxy matrix composites filled with nano sized silica particles is discussed in this paper. Especially, the variation of the coefficient of friction and the wear resistance according to the change of apply load and sliding velocity were investigated for these materials. Wear tests of pin-on-disc mode were carried out and the wear test results exhibited as following ; The epoxy matrix composites showed lower coefficient of friction compared to the neat epoxy through the whole sliding distance. As increasing the sliding velocity the epoxy matrix composites indicated lower coefficient of friction, whereas the neat epoxy showed higher coefficient of friction as increasing the sliding velocity. The specific friction work of both materials were increased with apply load. In case of the epoxy matrix composites, the running in periods of friction were reduced as increase in apply load. The epoxy matrix composites were improved the wear resistance by adding the nano silica particles remarkably. It is expected that the load carrying capacity of the epoxy matrix composites will be improved by increase of Pv factor.

Effect of Vibrational Amplitude on Friction and Wear Properties of Magnetorheological Elastomer (진폭에 따른 자기유변탄성체의 마찰 특성 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.39-43
    • /
    • 2016
  • Magnetorheological elastomers (MREs) are a type of “smart” material, and their properties can be controlled rapidly and reversibly under the influence of an external stimulus. The application of an external magnetic field can change the shear modulus, hardness, and friction coefficient of MREs. The friction can cause vibration; moreover, the vibration can affect friction. The change of friction depends on the relative motion, normal force, roughness of the rubbing surfaces, material type, temperature, lubrication, relative humidity, and vibration condition. As MREs are a type of “smart material,” their friction coefficient can be reduced by applying an external magnetic field—the applications of this feature in engineering have been widely studied. However, the friction properties of MREs under vibration have not been tested to date. In this study, MRE samples and a reciprocating friction tester were fabricated. The friction coefficient was measured to evaluate the friction properties under various vibration conditions; subsequently, the wear depth and wear surface profile of the MRE were observed in order to evaluate the wear properties. The results show that the friction coefficient of the MREs decreased when a magnetic field was applied. Moreover, the friction coefficient decreased when the vibrational amplitudes increased. The wear depth of the MRE also decreased as the vibrational amplitudes increased.

Friction and Wear Characteristics of Automotive Friction Materials Containing Different Relative Amounts of Solid Lubricants(Graphite, MoS$_2$and $_2$S$_3$) (고체윤활제(Graphite, MoS$_2$, Sb$_2$S$_3$)의 상대량에 따른 마찰재의 마찰 및 마모특성에 관한 연구)

  • Choi, Nak-Cheon;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.219-224
    • /
    • 1999
  • The effects of solid lubricants on wear and friction characteristics of friction materials were studied using a pad-on-disk type friction tester. Friction materials with ten formulations containing different relative amounts of solid lubricants(graphite, MoS$_2$and Sb$_2$S$_3$) were investigated. Results of this work showed that each formulation with different relative amounts of the lubricants had unique friction characteristics. At low brake temperatures, friction materials containing rich graphite showed a small amount of $\mu$ change during sliding. At elevated temperatures, on the other hand, friction materials with rich Sb$_2$S$_3$and graphite showed smaller $\mu$ changes suggesting complementary lubrication of Sb$_2$S$_3$and graphite during sliding. However, the friction materials with rich Sb$_2$S$_3$showed a large amount of wear.

  • PDF

Characteristics of friction and wear of the metals in boundary lubrication (경계윤활 상태에서의 금속재료의 마찰 및 마멸 특성)

  • 류종관;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.256-262
    • /
    • 1998
  • Many lubricated systems experience boundary, lubrication condition during operation. However, the friction and wear characteristics of boundary lubrication are not clearly understood. In this work the factors which affect the friction and wear between boundary lubricated metallic surfaces are investigated. Experiments were performed on atuminium, copper, and SM45C with bearing ball using a pin-on disk type tester. The experimental conditions were determined by Taguchi experimental method. From the experimental results, the major factors that influence the friction and wear characteristics of boundary lubrication could be identified.

  • PDF

Friction and wear properties of carbon fiber reinforced epoxy composite for the artificial hip joint application (인공고관절 모사조건하에서의 탄소섬유 복합재료의 마찰 및 마모 특성)

  • 송영석;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.239-241
    • /
    • 1999
  • Recently, the friction and wear behaviors of UHMWPE, ceramic and metal is being researched actively for the use as an artificial hip-joint. In this study, because of good wear properties of carbon fiber, we made experiments about the friction and wear of carbon fiber reinforced epoxy composite under the lubricative and the dry condition. The possibilities of carbon-carbon composite for the artificial hip joint application was studied from this results.

  • PDF

A Study on Friction and Wear Characteristics of Welded Rails Under Various Sliding Environments (레일 용접부의 미끄럼 환경변화에 따른 마찰 및 마멸특성 연구)

  • 김청균
    • Tribology and Lubricants
    • /
    • v.15 no.2
    • /
    • pp.178-183
    • /
    • 1999
  • This paper presents friction and wear related results of thermite and gas pressure welded rails under various environmental contact conditions. A welded rail which was fabricated by thermite welding and gas pressure one has been tested over full range of test conditions in a pin-on-disk wear testing machine. The results show that the friction coefficient and wear rates of a welded rail are heavily dependent on the contact pressures and sliding environments for two welding methods such as thermite and gas pressure weldings.

Friction and Wear Properties of Cu and Fe-based P/M Bearing Materials

  • Tufekci Kenan;Kurbanoglu Cahit;Durak Ertugrul;Tunay R. Fatih
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.513-521
    • /
    • 2006
  • The performances of porous bearings under different operating conditions were experimentally investigated in this study. Material groups studied are 90%Cu + 10%Sn bronze and 1%C + % balance Fe iron-based self-lubricating P/M bearings at constant (85%) density. In the experiments, the variation of the coefficient of friction and wear ratio of those two different group materials for different sliding speeds, loads, and temperatures were investigated. As a result, the variation of the friction coefficient-temperature for both constant load, and constant sliding speed, friction coefficient-average bearing pressure, PV-wear loss and temperature-wear loss curves were plotted and compared with each other for two materials, separately. The test results showed that Cu-based bearings have better friction and wear properties than Fe-based bearings.

Friction and Wear Simulation of Suspended Silicon Asperity Moving over a Plate at Microscale

  • Cho, Sung-San;Kim, Jung-Soo;Park, Seung-Ho
    • International Journal of Safety
    • /
    • v.5 no.1
    • /
    • pp.10-16
    • /
    • 2006
  • A suspended hemispherical silicon asperity moving over a silicon plate was simulated. The simulation results on friction and wear in the interface between the two can help obtain more durable miscroscale structures. Silicon structures were constructed with Tersoff three-body potential. Dependence of friction and wear of the asperity on both the atomic arrangement in the plate and the moving direction was investigated under the condition that the asperity is subject to the attractive normal force due to the plate. The results show that the variation of friction force with the movement of asperity, and the occurrence of adhesive wear are attributed to the formation and rupture of asperity, junction between the asperity and the plate. The friction force and wear are smaller when the asperity is incommensurate with the plate, and they also depend on the moving direction of the asperity over the plate.