• 제목/요약/키워드: freundlich isotherm

검색결과 419건 처리시간 0.024초

Burkholderia tropica as a Potential Microalgal Growth-Promoting Bacterium in the Biosorption of Mercury from Aqueous Solutions

  • Zarate, Ana;Florez, July;Angulo, Edgardo;Varela-Prieto, Lourdes;Infante, Cherlys;Barrios, Fredy;Barraza, Beatriz;Gallardo, D.I;Valdes, Jorge
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권6호
    • /
    • pp.1138-1149
    • /
    • 2017
  • The use of microalgal biomass is an interesting technology for the removal of heavy metals from aqueous solutions owing to its high metal-binding capacity, but the interactions with bacteria as a strategy for the removal of toxic metals have been poorly studied. The goal of the current research was to investigate the potential of Burkholderia tropica co-immobilized with Chlorella sp. in polyurethane discs for the biosorption of Hg(II) from aqueous solutions and to evaluate the influence of different Hg(II) concentrations (0.041, 1.0, and 10 mg/l) and their exposure to different contact times corresponding to intervals of 1, 2, 4, 8, 16, and 32 h. As expected, microalgal bacterial biomass adhered and grew to form a biofilm on the support. The biosorption data followed pseudo-second-order kinetics, and the adsorption equilibrium was well described by either Langmuir or Freundlich adsorption isotherm, reaching equilibrium from 1 h. In both bacterial and microalgal immobilization systems in the co-immobilization of Chlorella sp. and B. tropica to different concentrations of Hg(II), the kinetics of biosorption of Hg(II) was significantly higher before 60 min of contact time. The highest percentage of biosorption of Hg(II) achieved in the co-immobilization system was 95% at pH 6.4, at 3.6 g of biosorbent, $30{\pm}1^{\circ}C$, and a mercury concentration of 1 mg/l before 60 min of contact time. This study showed that co-immobilization with B. tropica has synergistic effects on biosorption of Hg(II) ions and merits consideration in the design of future strategies for the removal of toxic metals.

Phosphate sorption to quintinite in aqueous solutions: Kinetic, thermodynamic and equilibrium analyses

  • Kim, Jae-Hyun;Park, Jeong-Ann;Kang, Jin-Kyu;Kim, Song-Bae;Lee, Chang-Gu;Lee, Sang-Hyup;Choi, Jae-Woo
    • Environmental Engineering Research
    • /
    • 제20권1호
    • /
    • pp.73-78
    • /
    • 2015
  • The aim of this study was to examine the phosphate (P) removal by quintinite from aqueous solutions. Batch experiments were performed to examine the effects of reaction time, temperature, initial phosphate concentration, initial solution pH and stream water on the phosphate adsorption to quintinite. Kinetic, thermodynamic and equilibrium isotherm models were used to analyze the experimental data. Results showed that the maximum P adsorption capacity was 4.77 mgP/g under given conditions (initial P concentration = 2-20 mgP/L; adsorbent dose = 1.2 g/L; reaction time = 4 hr). Kinetic model analysis showed that the pseudo second-order model was the most suitable for describing the kinetic data. Thermodynamic analysis indicated that phosphate sorption to quintinite increased with increasing temperature from 15 to $45^{\circ}C$, indicating the spontaneous and endothermic nature of sorption process (${\Delta}H^0=487.08\;kJ/mol$; ${\Delta}S^0=1,696.12\;J/(K{\cdot}mol)$; ${\Delta}G^0=-1.67$ to -52.56 kJ/mol). Equilibrium isotherm analysis demonstrated that both Freundlich and Redlich-Peterson models were suitable for describing the equilibrium data. In the pH experiments, the phosphate adsorption to quintinite was not varied at pH 3.0-7.1 (1.50-1.55 mgP/g) but decreased considerably at a highly alkaline solution (0.70 mgP/g at pH 11.0). Results also indicated that under given conditions (initial P concentration=2 mgP/L; adsorbent dose=0.8 g/L; reaction time=4 hr), phosphate removal in the stream water (1.88 mgP/g) was lower than that in the synthetic solution (2.07 mgP/g), possibly due to the presence of anions such as (bi)carbonate and sulfate in the stream water.

개망초 추출물을 이용한 천연염색 (제2보) -면섬유에 대한 염색성- (Natural Dyeing using the Colorants extracted from American Fleabane (Part II) - Dyeing properties on cotton -)

  • 신윤숙;조아랑
    • 한국의류학회지
    • /
    • 제28권12호
    • /
    • pp.1625-1631
    • /
    • 2004
  • 개망초로부터 추출한 색소의 면 섬유에 대한 염색성을 조사하였다. 염색조건과 매염처리가 염착량(K/S값)및 CIELAB 색상에 미치는 영향을 평가하였으며, 또한 염색한 시료의 견뢰도를 측정하여 실용성을 확인하였다. 개망초 색소의 면 섬유에 대한 친화력은 높지 않았으며, Freundlich형의 등온흡착곡선을 보여 염착이 주로 수소결합에 의해 이루어지는 것으로 나타났다. 동시 또는 후매염처리 방법보다는 전매염처리 방법이 염차량 증진에 더 효과적이었으나, 주석매염제를 제외하고 매염제에 의한 염착량 증진효과는 크지 않았다. 매염처리에 관계없이 모든 시료는 Y계열의 색상을 나타내어 큰 변화는 없었다. 모든 시료의 세탁견뢰도는 낮았으며 , 땀 및 마찰견뢰도는 매우 양호하였으며 매염 처리가 견뢰도 증진에 미치는 영향은 크지 않았다.

Congo Red로 염색한 면섬유의 염색성에 미치는 전해질의 영향 (The Influence of Electrolytes on the Dyeing Properties of Congo Red on Cotton Fibers)

  • Lee, Young-Hee;Park, Joon-Myung;Sung, Woo-Kyung;Kim, Kyung-Hwan
    • 한국염색가공학회지
    • /
    • 제3권2호
    • /
    • pp.34-42
    • /
    • 1991
  • The effects of electrolyte on dyeing properties of cotton fiber with Congo Red have been studied at 90, 70 and $40^{\circ}C$. Each dyeing carried into an infinite bath with $1\times10^{-4}$ mol/l of Congo Red and with various concentration of electrolytes. The results obtained from this study were as follow; 1. The equilibrium adsorption of dye $(C_\infty)$ values decreased with increasing dyeing temperature, $C_\infty$ values increased in the order KCl>NaCl>LiCl. 2. The values of apparent diffusion coefficients $(D_a)$ increased with increasing dyeing temperature, but $D_a$ values decreased in the order KCl$D_a$ values decreased with increasing electrolyte concentration. 4. Effect of electrolytes decreased with increasing dyeing temperature. 5. The values of standard affinities of dyeing $(-\triangle\mu^{\circ})$, the standard heats of dyeing $(-\triangleH^{\circ})$, and the standard entropies $(-\triangleS^{\circ})$, increased in the order KCl>NaCl>LiCl. 6. Equilibrium adsorption isotherm curve were Freundlich type, and in the Equation y=a.x$^{n}$ , the values of a and n increased in the order KCl>NaCl>LiCl. 7. The value of $-\triangle\mu^{\circ}$, $-\triangleH^{\circ}$, and $-\triangleS^{\circ}$, decreased with increasing electrolyte concentration.

  • PDF

Immobilization of Layered Double Hydroxide into Polyvinyl Alcohol/Alginate Hydrogel Beads for Phosphate Removal

  • Han, Yong-Un;Lee, Chang-Gu;Park, Jeong-Ann;Kang, Jin-Kyu;Lee, In;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • 제17권3호
    • /
    • pp.133-138
    • /
    • 2012
  • Polyvinyl alcohol/alginate hydrogel beads containing Mg-Al layered double hydroxide (LDH-PVA/alginate beads) were synthesized for phosphate removal. Results showed that blending PVA with the LDH-alginate beads significantly improved their stability in a phosphate solution. The kinetic reaction in LDH-PVA/alginate beads reached equilibrium at 12 hr-post reaction with 99.2% removal. The amount of phosphate removed at equilibrium ($q_e$) was determined to be 0.389 mgP/g. The equilibrium data were described well by the Freundlich isotherm with the distribution coefficient ($K_F$, 0.638) and the constant (n, 0.396). Phosphate removal in LDH-PVA/alginate beads was not sensitive to solution pH. Also, the removal capacity of LDH-PVA/alginate beads ($q_e$, 1.543 mgP/g) was two orders of magnitude greater than that of PVA/alginate beads ($q_e$, 0.016 mgP/g) in column experiments. This study demonstrates that LDH-PVA/alginate beads with a higher chemical stability against phosphate compared to LDH-alginate beads have the potential for phosphate removal as adsorptive media.

중금속 함유 실험실 폐수처리를 위한 폐달걀껍질의 재활용 (Recycling of Waste Egg Shells for Treatment of Laboratory Wastewater containing Heavy Metals)

  • 김은호;김형석;성낙창
    • 유기물자원화
    • /
    • 제7권1호
    • /
    • pp.13-21
    • /
    • 1999
  • 본 연구에서는 폐기물의 재활용 측면에서 폐달걀껍질에 의한 중화능을 파악하는 동시에 중금속 제거 가능성을 고찰하였다. 폐달걀껍질 자체내에 Ca와 같은 알칼리성 성분으로 인하여 pH 상승효과가 탁월하며, 또한 폐수중의 중금속은 pH 상승으로 인하여 수산화물로 침전 제거되는 것으로 여겨진다. 폐달걀껍질은 응집 침전 및 흡착제로써 역할을 하기 때문에 주입량과 흡착질 농도에 영향을 받는 것으로 여겨진다. 흡착강도 1/n 값은0.35~0.44의 범위이며 Cu>Pb>Cr의 순으로 높게 나타났으나 흡착용량 k 값은 2.61~3.26의 범위이며 Pb>Cr>Cu의 순으로 높게 나타내었다.

  • PDF

해수에서 6가 크롬 제거를 위한 흡착제로서의 산처리 적니 적용성 검토 (Applicability Assessment of Acid Treated Red Mud as Adsorbent Material for Removal of Six-valent Chromium from Seawater)

  • 강구;엄병환;김영기;박성직
    • 한국농공학회논문집
    • /
    • 제55권5호
    • /
    • pp.17-23
    • /
    • 2013
  • Six-valent chromium ($Cr^{6+}$) is a highly toxic pollutant, supplied in a variety of industrial activities such as leather tanning, cooling tower blowdown, and plating. Herein, we investigated the removal of $Cr^{6+}$ from aqueous phase using low-cost adsorbents. Steel slag, montmorillonite, illite, kaolinite, red mud, and acid treated red mud with 0.5, 1.0, and 2.0 M HCl were used as adsorbent for the removal of $Cr^{6+}$ and the results showed that acid treated red mud with 2.0 M HCl (ATRM-2.0 M) had higher adsorption capacity of $Cr^{6+}$ than other adsorbents used. Accordingly, $Cr^{6+}$ removal by ATRM-2.0 M were studied in a batch system with respect to changes in initial concentration of $Cr^{6+}$, initial solution pH, adsorbent dose, adsorbent mixture, and seawater. Equilibrium sorption data were described well by Freundlich isotherm model. The influence of initial solution pH on $Cr^{6+}$ adsorption was insignificant. The use of the ATRM-2.0 M alone was more effective than mixing it with other adsorbents including red mud, zeolite, oyster shell, lime stone, and montmorillonite for the removal of $Cr^{6+}$. The $Cr^{6+}$ removal of the ATRM-2.0 M was slightly less in seawater than deionized water, resulting from the presence of anions in seawater competing for the favorable adsorption site on the surface of ATRM-2.0 M. It was concluded that the ATRM-2.0 M can be used as a potential adsorbent for the removal of $Cr^{6+}$ from the aqueous solutions.

Improving the permeability and adsorption of phenol by organophilic clay in clay liners

  • Heidarzadeh, Nima;Parhizi, Paria
    • Environmental Engineering Research
    • /
    • 제25권1호
    • /
    • pp.96-103
    • /
    • 2020
  • The aim of this study is to investigate the effect of five different combinations including: sand 70%, bentonite 30% (S70B30)- sand 80%, bentonite 20% (S80B20)- sand 80%, organophilic 20% (S80M20)- sand 60%, bentonite 20%, organophilic 20% (S60B30M20) and sand 75% - bentonite 15% - organophilic 10% (S75B15M10) on landfill linear structure in order to decrease phenol leaching. Hydraulic conductivity and adsorption behavior of the samples were investigated. The results demonstrated that the lowest hydraulic conductivity coefficient ($1.16{\times}10^{-11}{\frac{m}{s}}$) was obtained for S70B30. Furthermore, adding more than 20% of bentonite had no significant effect on reducing permeability. Moreover, Freundlich isotherm was introduced as the best model explaining adsorption behaviour due to its highest determination coefficient (0.945). The best samples for adsorption capacity of phenol and for both permeability and adsorption are S80M20 and S60B30M20, respectively. Although the presence of bentonite was effective in reducing hydraulic conductivity, organic clay had no considerable impact on reducing permeability. Though, it's an exceptional role in adsorbing organic contaminants including phenol cannot be ignored. To meet all regulatory constraints, the optimal compound is made up of 10.2% of bentonite and 2.8% of organophilic clays with a minimized cost of 13.64 ($/ton).

황산용액(黃酸溶液)으로부터 이온교환수지(交換樹脂) Lewatit TP 220에 의한 니켈의 회수(回收) (Recovery of Nickel from sulfuric acid solution using Lewatit TP 220 ion exchange resin)

  • 강남희;박경호
    • 자원리싸이클링
    • /
    • 제20권6호
    • /
    • pp.28-36
    • /
    • 2011
  • 황산용액 중에 존재하는 니켈을 회수하기 위해 이온교환수지법을 이용한 기초연구를 수행하였다. 제조된 모의 니켈(Ni)용액에 독일 Lanxess사(社)의 Lewatit Monoplus TP 220를 이용하여 회분식 실험을 하였다. 흡착반응에 영향을 미치는 온도, 교반속도, 반응시간, pH, 이온교환수지 양, 니켈이온농도 등에 대해 고찰하였다. 초기 pH(2.0~5.0)와 교반속도는 니켈의 흡착에 거의 영향을 미치지 않았으며, 평형에 도달하기 위하여 72시간의 시간이 필요했다. 평형실험결과 Freundlich 흡착등온식에 적합하였고, 흡착반응속도는 유사 2차 반응 모델(pseudo-second order)로 잘 모사되었다. 한편 니켈을 함유한 실제 도금세정폐액의 흡착 실험을 행하여 모의용액의 흡착거동과 비교하였고, 흡착된 니켈은 황산 농도가 높아짐에 따라 수지로부터 효과적으로 용리되었다.

Crab Shell로부터 추출한 중금속 흡착제들의 특성 (Characteristics of Heavy Metal Ion Adsorbent Extracted from Crab Shell)

  • 현근우;이찬기;이해승
    • 환경위생공학
    • /
    • 제14권2호
    • /
    • pp.46-55
    • /
    • 1999
  • This study compared the adsorption characteristics of heavy metal ions by crab shell, treated crab shell with 2N-HCl, treated crab shell with 4%-NaOH, chitin and chitosan.Using crushed crab shell, the heavy metal ions removal rates of $Cd^{2+}$ and $Zn^{2+}$ were about 70-80% in 45minutes, but the removal rates of $Cu^{2+}$, $Cr^{6+}$ and $Pb^{2+}$ was less than 10%, 10% and 30%, respectively. For the by-products crab shell by 2N-HCl treatment, it was shown that the removal rates of $Cu^{2+}$ and $Pb^{2+}$ were about 70-80% in 45minutes reaction. But, some problems were observed, that the contained protein in crab shell was changed into gel in the mixing solution after a few hours. For the by-products of crab shell by 4%-NaOH treatment, the removal rates of Pb and Zn were about 90% in 45 minutes, and those of capacity of chitin and chitosan powder was better than those of the other by-products. The more adding to the adsorbent dosages increased the removal rates, and the adsorption reaction was rapidly occurred in a few minute. Using 1.0 wt% chitin powder, the heavy metal removal rates were ordered $Cu^{2+}$(94%) > $Zn^{2+}$(89%) > $Cd^{2+}$(88%) > $Pb^{2+}$(77%) > $Cr^{6+}$(58%) in 45 minutes. Using 1.0 wt% chitosan powder, the heavy metal removal rates were ordered $Cu^{2+}$(99%) > $Pb^{2+}$(96%) > $Cd^{2+}$(79%) > $Zn^{2+}$(71%) > $Cr${6+}$(46%) in 45minutes. The degree of degree of deacetylation by prepared chitosan was 91%.The Freundlich adsorption isotherm of $Cu^{2+}$, $Cd^{2+}$ and $Zn^{2+}$, when it was applied to 1.0 wt% chitosan powder in minutes, can be acceptable very strictly. The equation constant (1/n) for $Cu^{2+}$, $Cd^{2+}$ and $Zn^{2+}$ were 0.54 0.41 and 0.23 respectively.

  • PDF