• Title/Summary/Keyword: fresh water injection

Search Result 19, Processing Time 0.035 seconds

A Numerical Study on Behavior of Fresh Water Body between Injection and Production Wells with Variation of Fresh Water Injection Rate in a Saline Aquifer (염수 대수층 내 담수 주입양 변화에 따른 주입정과 양수정 사이의 담수체 거동에 관한 수치적 연구)

  • Jeong, Woochang
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.1
    • /
    • pp.23-35
    • /
    • 2015
  • In this study, the behavior of fresh water body between the injection and production wells with the fresh water injection rate in a saline aquifer is numerically analyzed by using a three-dimensional numerical model. 8 injection wells are arranged at equidistant intervals on a concentric circle and one production well is located at the center of this circle. In the case that the fresh water injection rate is relatively small, the fresh water body around a injection well screen is not mixed with neighboring ones and is independently distributed. However, when the injection rate is increased, the size of the fresh water body is continuously increased, and the areas, where saline and fresh water among injection wells are mixed, are appeared. The mixed degree is increased as the injection rate is increased. This phenomenon is identically generated around the production well. Moreover, when the injection rate is increased, the ratio of saline water in and around the production well is decreased.

Fresh Water Injection Test in a Fractured Bedrock Aquifer for the Mitigation of Seawater Intrusion (해수침투 저감을 위한 균열암반 대수층 내 담수주입시험)

  • Shin, Je-Hyun;Byun, Joong-Moo
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.371-379
    • /
    • 2010
  • Fresh water injection test in a fractured bedrock aquifer was applied as an efficient approach to lower saline concentrations in the saltwater-freshwater transition zone formed by seawater intrusion in a coastal area. The methodology and effectiveness of fresh water injection for hydraulically controlling seawater intrusion is overwhelmingly site dependent, and there is an urgent need to characterize the permeable fractures or unconsolidated porous formations which can allow for seawater flow and transport. Considering aquifer characteristics, injection and monitoring boreholes were optimally designed and completed to inject fresh water through sand layer and fractured bedrock, respectively. We devised and used the injection system using double packer for easy field operation and maintenance. Overall fracture distribution was systematically identified from borehole image logs, and the section of fresh water injection was decided from injection test and monitoring. With fresh water injection, the fluid electrical conductivity of the monitoring well started to be lowered by the inflow of fresh water at the specific depth. And this inflow leaded to the replacement of the fluid in the upper parts of the borehole with fresh water. Furthermore, the injection effect lasted more than several months, which means that fresh water injection may contribute to the mitigation of seawater intrusion in a coastal area.

Fresh Water Injection Test to Mitigate Seawater Intrusion and Geophysical Monitoring in Coastal Area (해수침투 저감을 위한 담수주입시험 및 지구물리 모니터링)

  • Park, Kwon-Gyu;Shin, Je-Hyun;Hwang, Se-Ho;Park, In-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.353-360
    • /
    • 2007
  • We practiced fresh water injection test to identify its applibility as a method of seawater intrusion mitigation technique, and monitored the change of borehole fluid conductivity and the behavior of injected fresh water using borehole multichannel electrical conductivity monitoring and well-logging, and DC resistivity and SP monitoring at the surface. Well-logging and multichannel EC monitoring showed the decrease of fluid conductivity due to fresh water injection. We note that such an injection effect lasts more than several month which means the applibility of fresh water injection as a seawater intrusion control technique. Although SP monitoring did not show meaningful results because of weather condition during monitoring and the defects of electrodes due to long operation time, DC resistivity monitoring showed its effectiveness and applicability as a monitoring and assessment techniques of injection test by means of imaging the behavior and the front of fresh water body in terms of the increase of resistivity with reasonable resolution. In conclusion, we note that geophysical techniques can be an effective method of monitoring and evaluation of fresh water injection test, and expect that fresh water injection may be an practical method for the mitigation of seawater intrusion when applied with optimal design of injection well distribution and injection rate based on geophysical evaluation.

Modeling of Steam Injection Heater for Fresh Water Generator (조수기용 증기분사 열교환기에 대한 모델링)

  • Hong, Cheol-Hyun;Lee, Euk-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.877-885
    • /
    • 2008
  • Steam injection heater is the most widely used method for fresh water generator throughout industry. This method is often chosen because of its simplicity. The steam bubbles condense and give up their heat to the surrounding liquid. Experimental study on steam injection heater has been performed in order to find the effect of major parameter. And conservation equation and Bernoulli obstruction theory are used for numerical simulation model of vapor flow-rate. Qualitative comparisons between simulations and measurements show a good agreement and the simulation models are thereby verified.

Replacement of Saline Water through Injecting Fresh Water into a Confined Saline Aquifer at the Nakdong River Delta Area (염수로 충진된 낙동강 델타지역 피압대수층에서 담수주입에 의한 염수치환 연구)

  • Won, Kyung-Sik;Chung, Sang Yong;Lee, Chang-Sup;Jeong, Jae-Hoon
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.215-225
    • /
    • 2015
  • We performed injection tests in a deep-seated confined aquifer to assess the potential of artificial recharge as a means of preventing saltwater contamination, thereby securing groundwater resources for the Nakdong Delta area of Busan City, Korea. The study area comprises a confined aquifer, in which a 10-21-m-thick clay layer overlies 31.5-36.5 m of sand and a 2.8-11-m-thick layer of gravel. EC logging of five monitoring wells yielded a value of 7-44 mS/cm, with the transition between saline and fresh water occurring at a depth of 15-38 m. Above 5 m depth, water temperature is 10-15.5℃, whereas between 5 and 50 m depth the temperature is 15.5-17℃. Approximately 950 m3 of fresh water was injected into the OW-5 injection well at a rate of 370 m3/day for 62 hours, after which the fresh water zone was detected by a CTD Diver installed at a depth of 40 m. The persistence of the fresh water zone was determined via EC and temperature logging at 24 hours after injection, and again 21 days after injection. We observed a second fresh water zone in the OW-2 well, where the first injection test was performed more than 20 days before the second injection test. The contact between fresh and saline water in the injection well is represented by a sharp boundary rather than a transitional boundary. We conclude that the injected fresh water occupied a specific space and served to maintain the original water quality throughout the observation period. Moreover, we suggest that artificial recharge via long-term injection could help secure a new alternative water resource in this saline coastal aquifer.

Effect of variation of water retention characteristics due to leachate circulation in municipal solid waste on landfill stability

  • M. Sina Mousavi;Yuan Feng;Jongwan Eun;Boo Hyun Nam
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • This study investigated the effect of water retention characteristics between aged and fresh Municipal Solid Waste (MSW) on the stability of the landfill. A series of transient numerical modeling for the slope of an MSW landfill was performed considering the variation of water retention characteristics due to leachate circulation. Four different scenarios were considered in this analysis depending on how to obtain hydraulic conductivity and the aging degree of materials. Unsaturated hydraulic properties of the MSW used for the modeling were evaluated through modified hanging column tests. Different water retention properties and various landfill conditions, such as subgrade stiffness, leachate injection frequency, and gas and leachate collection system, were considered to investigate the pore water distribution and slope stability. The stability analyses related to the factor of safety showed that unsaturated properties under those varied conditions significantly impacted the slope stability, where the factor of safety decreased, ranging between 9.4 and 22%. The aged materials resulted in a higher factor of safety than fresh materials; however, after 1000 days, the factor of safety decreased by around 10.6% due to pore pressure buildup. The analysis results indicated that using fresh materials yielded higher factor of safety values. The landfill subgrade was found to have a significant impact on the factor of safety, which resulted in an average of 34% lower factor of safety in soft subgrades. The results also revealed that a failed leachate collection system (e.g., clogging) could result in landfill failure (factor of safety < 1) after around 298 days, while the leachate recirculation frequency has no critical impact on stability. In addition, the accumulation of gas pressure within the waste body resulted in factor of safety reductions as high as 24%. It is essential to consider factors related to the unsaturated hydraulic properties in designing a landfill to prevent landfill instability.

Early Development of Loach Oocytes Activated by Parthenogenetic Agents (미꾸라지 난자의 활성화에 의한 처녀발생 유기)

  • 이재현;최석용;주와종;박홍양;이상호
    • Korean Journal of Animal Reproduction
    • /
    • v.18 no.3
    • /
    • pp.183-189
    • /
    • 1994
  • We examined early development in loach(Misgurnus mizolepis) embryos with parthenogenetic agents well-known in mammals. Female loach was superovulated with an intraperitoneal injection of 15 IU human chorionic gonadotrophin (hCG) per gram body weight. After 13 h of hCG injection, the oocytes were obtained from the abdomen. The oocytes were activated with 10% ethanol in tap water or fish Ringer's solution for 5, 10 and 15 minutes(eTW5, 10, 15 and eFRS5, 10, 15), respectively. The activation rates were 29% and 10% in eFRS10 and eFRS15, 5% and 6% in eTW10 and eTW15 by judging the cleaved blastomeres. Whereas, no parthenogenetic embryo was produced by tap water or fish Ringer's solution alone. The activation rate with the fish Ringer's solution was higher than that of tap water. No embryonic development was observed by calcium ionophore, A23187, at concentrations of 10, 20, 40 and 100$\mu$M when treated for 1, 2.5 and 5 minutes, respectively. The activation agents did not cause early development as in mammalian eggs. Therefore, the results suggest that fresh water fish may have a different egg activation pathway from that of mammals.

  • PDF

Study on Development of Canine Oocytes Treated by In Vitro Fertilization and ICSI

  • Park, Ji-Hoon;Chung, Young-Ho;Kim, Sang-Keun
    • Reproductive and Developmental Biology
    • /
    • v.35 no.2
    • /
    • pp.137-141
    • /
    • 2011
  • These study was to investigate the in vitro fertilization and viability of fresh and vitrified oocytes. Also, the developmental capacity of IVF and intracytoplasmic sperm injection (ICSI) oocytes were investigated. Then vitrification was performed with the use of 20% ethylene glycol + 20% DMSO + 0.5 M sucrose + 10% FCS + TCM-199 medium. Vitrification immature oocytes are cultured in vitrification solution for 10 min afterwards transferred to expose at room temperature for 5 min. and transferred to the ice water for 5 min. The oocytes were sealed in a 1.0 mm straw and placed in a $LN_2$ container. Frozen oocytes were rapidly thawed in a water bath at $30{\sim}35^{\circ}C$, and then placed in TCM-199 medium containing 0.5 M sucrose for 5 min each, respectively, at $38^{\circ}C$. After being washed for 2~3 times, using fresh medium the oocytes were cultured in TCM-l99 medium supplemented with 5% FCS at $38^{\circ}C$ in 5% $CO_2$ and air. The normal morphology of fresh and vitrified-thawed oocytes were $87.1{\pm}2.1%$ and $54.8{\pm}2.5%$, respectively. The viability rates of fresh and vitrified-thawed oocytes were $70.0{\pm}2.2%$ and $41.9{\pm}2.6%$, respectively. Viability rates of vitrified-thawed oocytes were lower than that of fresh follicular oocytes (p<0.05). The in vitro maturation rates of fresh and vitrified oocytes were $45.1{\pm}3.6%$ and $28.9{\pm}4.4%$, respectively. The IVF rates of fresh follicular and vitrified-thawed oocytes were 34.00.2% and $20.2{\pm}2.6%$, respectively. The in vitro maturation and fertilization rates of vitrified-thawed oocytes were lower than those of the fresh follicular oocytes (p<0.05). A total of 350 oocytes were fixed and stained after co-incubation with spermatozoa, of which 88 had identifiable nuclear material. After IVF for 20 hrs, $25.1{\pm}3.4%$ of the oocytes found to have been penetrated by spermatozoas. Oocytes were fixed and stained after ICSI, and 105 oocytes contained identifiable nuclear material. After IVF and ICSI for 20 hrs, $34.3{\pm}3.4%$ and $59.0{\pm}2.0%$ of the oocytes were found to have been penetrated by spermatozoas. The developmental rates upon ICSI were significantly higher than those of the IVF method (p<0.05).

A Study on Effect of Recirculated Exhaust Gas upon Wears of Piston and Piston Rings in Diesel Engines with Scrubber EGR System (스크러버형 EGR시스템 디젤기관의 피스톤 및 피스톤링 마모에 미치는 재순환 배기의 영향에 관한 연구)

  • 배명환;하정호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.79-86
    • /
    • 2000
  • The effects of recirculated exhaust gas on the wears of piston and piston rings were investigated by the experiment with a two-cylinder, four cycle, indirect injection diesel engine operating at an engine load of 75% and an engine speed of 1600 rpm. For the purpose of comparison between the wear rates of two cylinders with and without EGR, the recirculated exhaust gas was sucked into one of two cylinders after the soot contenets in exhaust emissions were removed by an intentionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diameter), while only the fresh air was inhaled into the other cylinder. These experiments were carried out on the fuel injection timing fixed at 15.3$^{\circ}$ BTDC. It was found that the wear rate of piston skirt with EGR increased a little bit, but the piston head diameter increased, rather than decreased, owing to soot adhesion and erosion wear, and especially larger with EGR, and that the wear rates of the top and second piston ring(compression ring)thickness with EGR were more than twice the wear rate of top ring in case of no EGR, but the wear rate of oil rings thickness without EGR increased greater than that with EGR.

  • PDF

A Study on Effect of Recirculated Exhaust Gas upon Wear of Cylinder Liner and Piston in Diesel Engines

  • Bae, Myung-Whan;Tsuchiya, Kazuo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1524-1532
    • /
    • 2001
  • The effects of recirculated exhaust gas on the wear of cylinder liner and piston were experimentally investigated by a two-cylinder, four cycle, indirect injection diesel engine operating at 75% lo ad and 1600 rpm. For the purpose of comparison between the wear rates of the two cylinders with and without EGR, the recirculated exhaust gas was sucked into one of two cylinders after the soot in exhaust emissions was removed by an intentionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diameter), while only the fresh air was inhaled into the other cylinder. These experiments were carried out with the fuel injection timing fixed at 15.3$^{\circ}$ BTDC. It was found that the mean wear rate of cylinder liner with EGR was greater in the measurement positions of the second half than those of the first half, that the mean wear rate without EGR was almost uniform regardless of measurement positions, and that the wear rate of piston skirt with EGR increased a little bit, but the piston head diameter increased, rather than decreased, owing to soot adhesion and erosion wear, and especially larger with EGR.

  • PDF