• Title/Summary/Keyword: fresh and dry matter yield

Search Result 233, Processing Time 0.021 seconds

Changes of Feed Quality at Different Cutting Dates among Five Winter Cereals for Whole-Crop Cereal Silage in Middle Region (중부지역에서 총체맥류의 예취시기별 사료가치 변화)

  • Ju, Jung-Il;Lee, Joung-Jun;Park, Ki-Hun;Lee, Hee-Bong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.3
    • /
    • pp.187-196
    • /
    • 2009
  • The objectives of this study were to evaluate the different cutting dates on the changes of feed quality among five cereals (barley, wheat, rye, triticale and oat) for whole crop silage. Field trials were conducted at paddy field in Yesan, Chungnam Province and the aerial parts were clipped 10 days from 15 March to 15 June. Changes of acid detergent fiber (ADF) content in relation to different cutting dates was described by a quadratic curve for 5 winter cereals crops. ADF content reached a maximum at 5 days after heading in barley cultivar 'Youngyang', 7 days in wheat 'Keumkang', 18 days in rye 'Gogu', 1 days in triticale 'Shinyoung' and 10 days in oat 'Samhan'. Neutral detergent fiber (NDF) content were linearly increased as growing after overwintering and stagnated or slightly decreased after heading. The crude protein were linearly decreased throughout the growth period of 5 whole crop cereals. Digestible dry matter (DDM) content were decreased from early stages to heading and subsequently increased as grain filling. Relative feed value (RFV) for 5 crops were decreased as growing and subsequently increased as grain filling after heading. Barley cultivar for only forage use 'Youngyang' were lower at ADF and NDF content and higher at DDM and RFV after heading than those of other cereals for forage use. So, barley for whole crop silage was a good crop with high feed quality and high proportion of spikes compared with other winter cereal crops. Wheat cultivar for grain 'Keumkang' were higher at crude protein than those of other four cereals from overwintering to maturing and were higher at DDM and RFV after heading than those of rye, triticale and oat. Rye cultivar with cold tolerant and high fresh yielding 'Gogu' were highest at ADF and NDF content and lowest at DDM content and RFV. So, rye was a crop with low quality for forage use compared to other winter cereal crops. Triticale cultivar with flourishing and high yielding 'Shinyoung' was intermediated between barley and rye, and were linearly increased at DDM yield by different cutting dates. Oat cultivar with cold tolerant and high tillering 'Samhan' were lower at ADF and NDF content and higher at crude protein before heading, but after heading, there are not especially advantages compared to barley, wheat or triticale.

'Saeyoung', a Winter Forage Triticale Cultivare of High-Yielding and Tolerance to Cold (추위에 강하고 수량이 많은 조사료용 트리티케일 품종 '세영')

  • Han, Ouk-Kyu;Park, Hyung-Ho;Park, Tae-Il;Cho, Sang-Kyun;Choi, In-Bae;Noh, Jae-Hwan;Kim, Kee-Jong;Oh, Young-Jin;Park, Ki-Hun;Kim, Dea-Wook;Ku, Ja-Hwan;Kweon, Soon-Jong;Ahn, Jong-Woong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.2
    • /
    • pp.125-131
    • /
    • 2017
  • 'Saeyoung', a winter triticale (X Triticosecale Wittmack) for forage, was developed at the Department of Rice and Winter Cereal Crop, NICS, RDA in 2012. The cultivar 'Saeyoung' has narrow and long leaves of light green color, middle size and thin culm, and a medium grain of brown color. The heading date and yellow ripe stage of 'Saeyoung' was May 3 and May 27, which were similar to check cultivar 'Shinyoung', respectively. 'Saeyoung' showed a little stronger in cold tolerance and a little weaker in resistance to lodging than the check, and wet injury, powdery mildew, and leaf rust were similar to those of the check cultivar. The forage fresh and dry matter yields of 'Saeyoung' at milk-ripe stages were 47.2 and $15.6MT\;ha^{-1}$, respectively, which was 9% and 4% higher than those of the check. The crude protein content of 'Saeyoung' was 0.4% lower than 6.8% of the check, while was higher than the check cultivar 'Shinyoung' in neutral detergent fiber, acid detergent fiber. Total digestible nutrients of 'Saeyoung' was also 3% lower than 62.8% of the check cultivar. It showed grain yield of $4.1MT\;ha^{-1}$, which was 11% higher than that of the check. 'Saeyoung' is recommended for fall sowing forage crops in areas in which average daily minimum mean temperatures in January are higher than $-10^{\circ}C$.

Herbicidal Phytotoxicity under Adverse Environments and Countermeasures (불량환경하(不良環境下)에서의 제초제(除草劑) 약해(藥害)와 경감기술(輕減技術))

  • Kwon, Y.W.;Hwang, H.S.;Kang, B.H.
    • Korean Journal of Weed Science
    • /
    • v.13 no.4
    • /
    • pp.210-233
    • /
    • 1993
  • The herbicide has become indispensable as much as nitrogen fertilizer in Korean agriculture from 1970 onwards. It is estimated that in 1991 more than 40 herbicides were registered for rice crop and treated to an area 1.41 times the rice acreage ; more than 30 herbicides were registered for field crops and treated to 89% of the crop area ; the treatment acreage of 3 non-selective foliar-applied herbicides reached 2,555 thousand hectares. During the last 25 years herbicides have benefited the Korean farmers substantially in labor, cost and time of farming. Any herbicide which causes crop injury in ordinary uses is not allowed to register in most country. Herbicides, however, can cause crop injury more or less when they are misused, abused or used under adverse environments. The herbicide use more than 100% of crop acreage means an increased probability of which herbicides are used wrong or under adverse situation. This is true as evidenced by that about 25% of farmers have experienced the herbicide caused crop injury more than once during last 10 years on authors' nationwide surveys in 1992 and 1993 ; one-half of the injury incidences were with crop yield loss greater than 10%. Crop injury caused by herbicide had not occurred to a serious extent in the 1960s when the herbicides fewer than 5 were used by farmers to the field less than 12% of total acreage. Farmers ascribed about 53% of the herbicidal injury incidences at their fields to their misuses such as overdose, careless or improper application, off-time application or wrong choice of the herbicide, etc. While 47% of the incidences were mainly due to adverse natural conditions. Such misuses can be reduced to a minimum through enhanced education/extension services for right uses and, although undesirable, increased farmers' experiences of phytotoxicity. The most difficult primary problem arises from lack of countermeasures for farmers to cope with various adverse environmental conditions. At present almost all the herbicides have"Do not use!" instructions on label to avoid crop injury under adverse environments. These "Do not use!" situations Include sandy, highly percolating, or infertile soils, cool water gushing paddy, poorly draining paddy, terraced paddy, too wet or dry soils, days of abnormally cool or high air temperature, etc. Meanwhile, the cultivated lands are under poor conditions : the average organic matter content ranges 2.5 to 2.8% in paddy soil and 2.0 to 2.6% in upland soil ; the canon exchange capacity ranges 8 to 12 m.e. ; approximately 43% of paddy and 56% of upland are of sandy to sandy gravel soil ; only 42% of paddy and 16% of upland fields are on flat land. The present situation would mean that about 40 to 50% of soil applied herbicides are used on the field where the label instructs "Do not use!". Yet no positive effort has been made for 25 years long by government or companies to develop countermeasures. It is a really sophisticated social problem. In the 1960s and 1970s a subside program to incoporate hillside red clayish soil into sandy paddy as well as campaign for increased application of compost to the field had been operating. Yet majority of the sandy soils remains sandy and the program and campaign had been stopped. With regard to this sandy soil problem the authors have developed a method of "split application of a herbicide onto sandy soil field". A model case study has been carried out with success and is introduced with key procedure in this paper. Climate is variable in its nature. Among the climatic components sudden fall or rise in temperature is hardly avoidable for a crop plant. Our spring air temperature fluctuates so much ; for example, the daily mean air temperature of Inchon city varied from 6.31 to $16.81^{\circ}C$ on April 20, early seeding time of crops, within${\times}$2Sd range of 30 year records. Seeding early in season means an increased liability to phytotoxicity, and this will be more evident in direct water-seeding of rice. About 20% of farmers depend on the cold underground-water pumped for rice irrigation. If the well is deep over 70m, the fresh water may be about $10^{\circ}C$ cold. The water should be warmed to about $20^{\circ}C$ before irrigation. This is not so practiced well by farmers. In addition to the forementioned adverse conditions there exist many other aspects to be amended. Among them the worst for liquid spray type herbicides is almost total lacking in proper knowledge of nozzle types and concern with even spray by the administrative, rural extension officers, company and farmers. Even not available in the market are the nozzles and sprayers appropriate for herbicides spray. Most people perceive all the pesticide sprayers same and concern much with the speed and easiness of spray, not with correct spray. There exist many points to be improved to minimize herbicidal phytotoxicity in Korea and many ways to achieve the goal. First of all it is suggested that 1) the present evaluation of a new herbicide at standard and double doses in registration trials is to be an evaluation for standard, double and triple doses to exploit the response slope in making decision for approval and recommendation of different dose for different situation on label, 2) the government is to recognize the facts and nature of the present problem to correct the present misperceptions and to develop an appropriate national program for improvement of soil conditions, spray equipment, extention manpower and services, 3) the researchers are to enhance researches on the countermeasures and 4) the herbicide makers/dealers are to correct their misperceptions and policy for sales, to develop database on the detailed use conditions of consumer one by one and to serve the consumers with direct counsel based on the database.

  • PDF