• Title/Summary/Keyword: frequency-response

Search Result 5,534, Processing Time 0.028 seconds

Multiple Audio Watermarking using Quantization Index Modulation on Frequency Phase and Magnitude Response (주파수 위상 응답과 크기 응답에 QIM을 이용한 다중 오디오 워터마킹)

  • Seo, Yejin;Cho, Sangjin;Chong, Uipil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.71-78
    • /
    • 2013
  • This paper describes a multiple audio watermarking using Quantization Index Modulation (QIM) on frequency phase and magnitude response. Proposed embedding procedure is composed of two stage. At the first stage, the watermark is embedded on the frequency phase response using QIM. In the second stage, the watermark is embedded using adaptive QIM with the step-size that is adaptively determined using the maximum value of the frequency magnitude response of every frame. The watermark is extracted by calculating the Euclidean distance as the blind detection. The proposed method is robust against most of attacks of audio watermark benchmarking. For the Fourier attacks, the proposed method shows over 95% recovery rate.

Nonproportional viscous damping matrix identification using frequency response functions (주파수 응답 데이터를 이용한 비비례 점성감쇠행렬 추정)

  • Min, Cheon-Hong;Kim, Hyung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.369-373
    • /
    • 2016
  • Accurate identification of damping matrix in structures is very important for predicting vibration responses and estimating parameters or other characteristics affected by energy dissipation. In this paper, damping matrix identification method that use normal frequency response functions, which were estimated from complex frequency response functions, is proposed. The complex frequency response functions were obtained from the experimental data of the structure. The nonproportional damping matrix was identified through the proposed method. Two numerical examples (lumped-mass model and cantilever beam model) were considered to verify the performance of the proposed method. As a result, the damping matrix of the nonproportional system was accurately identified.

Estimation of Strain at Elastic System Using Acceleration Response (가속도 데이터를 활용한 선형 시스템의 변형률 예측)

  • Kim, Chan-Jung;Lee, Bong-Hyun;Jeon, Hyun-Cheol;Jo, Hyeon-Ho;Kang, Yeon-June
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.9-14
    • /
    • 2012
  • This paper investigates the prediction of the dynamic strain response using acceleration response only. Two methods are proposed for the strain prediction; one is based on beam theory and the other is calculated by the frequency response function between acceleration and strain. First, it is estimated the dynamics of the simple notched beam, including the non-linearity, through the uni-axial vibration testing. Then, the dynamic strain response is predicted under two different methods using acceleration response. The validation of proposed methods is conducted by the comparison between measured strain and predicted values. The comparison reveals that the proposed method based on the FRF between acceleration and strain is more reliable one than that stemmed from beam theory and the maximum relative error is less than 8 %.

Seismic response analysis of layered soils considering effect of surcharge mass using HFTD approach. Part II: Nonlinear HFTD and numerical examples

  • Saffarian, Mohammad A.;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.531-544
    • /
    • 2014
  • Studies of earthquakes over the last 50 years and the examination of dynamic soil behavior reveal that soil behavior is highly nonlinear and hysteretic even at small strains. Nonlinear behavior of soils during a seismic event has a predominant role in current site response analysis approaches. Common approaches to ground response analysis include linear, equivalent linear and nonlinear methods. These methods of ground response analysis may also be categorized into time domain and frequency domain concepts. Simplicity in developing analytical relations and accuracy in considering soils' dynamic properties dependency to loading frequency are benefits of frequency domain analysis. On the other hand, nonlinear methods are complicated and time consuming mainly because of their step by step integrations in time intervals. In part Ι of this paper, governing equations for seismic response analysis of surcharged and layered soils were developed using fundamental of wave propagation theory based on transfer function and boundary conditions. In this part, nonlinear seismic ground response is analyzed using extended HFTD method. The extended HFTD method benefits Newton-Raphson procedure which applies regular iterations and follows soils' fundamental stress-strain curve until convergence is achieved. The nonlinear HFTD approach developed here are applied to some examples presented in this part of the paper. Case studies are carried in which effects of some influencing parameters on the response are investigated. Results show that the current approach is sufficiently accurate, efficient, and fast converging. Discussions on the results obtained are presented throughout this part of the paper.

Shock Waveform Synthesis Methods for Shock Response Spectrum over Short Time Interval, Digital Filter for Obtaining Shock Response History and Applications Thereof (충격응답 스펙트럼이 나타나는 시간들의 차이가 짧은 충격파형의 합성방법 및 충격응답 내역을 구하는 디지털 필터)

  • Yoon, Eul-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.3 s.22
    • /
    • pp.73-82
    • /
    • 2005
  • This paper describes shock waveform synthesis methods for a shock response spectnlm over a short time interval with which intereference between parts within a test item is increased to perform a sufficient shock test for damage or malfunction which may be caused by the interference between parts, and a digital filter for obtaining a shock response history required for the shock waveform synthesis and a digital inverse filter for restoration by inversely using the digital filter. The time at which the maximax value occurs in the response history is detected in order to establish a delay time which is one of the parameters in the wavelet, on the condition that the natural frequency of SDOF system with a Q (quality factor) of 10 equals to the wavelet frequency of the zero delay wavelet input. A shock response spectrum over a short time interval and an abrupt change in the acceleration for an instant are illustrated as features of the synthesized waveform.

A Study on the Influence of Mutual Inductance between Wayside Transmitter and On-board Receiver upon Frequency Response in ATS Device (ATS 장치에서 지상자와 차상자 사이의 상호인덕턴스가 주파수 응답에 미치는 영향)

  • Kim, Min-Seok;Kim, Min-Kyu;Lee, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.384-393
    • /
    • 2012
  • Railroad signaling systems perform controlling the distance and routes between trains. Signaling methods on the wayside are to control passively the train speed by using signal flags which are installed on the wayside. ATS(Automatic Train Stop) device is used as the signaling method on the wayside in Korea. The ATS device is assistance equipment of engineers. Signal information is transmitted by combining mutual inductance between the wayside transmitter and on-board receiver. The wayside transmitter performs changing oscillation frequency according to the signal information. The on-board receiver performs controlling the train by receiving the frequency. Currently, the oscillation frequency on the on-board receiver is 78[kHz] in case of normal state. When the on-board receiver is over the wayside transmitter, the oscillation frequency is changed by capacitors of the wayside transmitter according to signal flags. In case of changing the oscillation frequency, the waveform is modified in the wayside transmitter and on-board receiver. This phenomenon is that other signals or communication frequency are included. In this paper, electric model between the wayside transmitter and on-board receiver is suggested and frequency response in the wayside transmitter and on-board receiver including other signals is estimated by the coupling coefficient. Also, the value of coupling coefficient is proposed to exclude other signals and demonstrated by using Matlab and PSpice program.

Frequency Response Function Based Substructural Analysis of Interior Noise (전달함수를 이용한 차실 소음의 부분구조 해석)

  • 황우석;이두호
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.480-485
    • /
    • 2000
  • This paper presents the application of the substrctural analysis based on the frequency responses for the prediction of the interior noise in a car. The complex trimmed body with the high modal density is presented by the experimental data. Finite element model presents the powertrain and its subframes with the lower modal density. The substructural analysis based on the frequency responses combines the frequency response functions from the numerical analysis and the experiments. It describes the interior noise successwfully. Using this method we can pick up the most dominant paths for the booming noise and predict the effects of the design changes easily.

  • PDF

Non-contact type AFM using frequency separation scheme (주파수응답 분리방법을 이용한 비접촉식 AFM)

  • 이성규;염우섭;박기환;송기봉;김준호;김은경;박강호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.375-378
    • /
    • 2002
  • In this paper, the frequency response separation scheme is proposed for high scanning speed and simple structure of non-contact type of AFM. A self-sensing cantilever is attached on the actuator for detect the atomic force between tip and the media surface. VCM or PZT are used for actuator. This paper presents the method to simplify the actuator structure and the performance of each actuator for non-contact type AFM. Based on the frequency response separation scheme, the only one actuator plays roles 1311owing low frequency surface and modulating self-sensing cantilever tip in contrast with convention non-contact type AFM. 10 ${\mu}{\textrm}{m}$ standard grid sample imaged to verify proposed scheme. This result shows the possibility simplifying the actuator structure and reducing cost of non-contact type AFM.

  • PDF

The Vibration Study on Car Compact Disk Player (자동차탑재용 컴펙트 디스크 플레이어의 진동특성 연구)

  • Lee, Tae-Keun;Kim, Byong-Sam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.283-288
    • /
    • 2006
  • This study developes the vibration model to estimate the vibration energy of damper/spring assembly(mainbase assembly) for car CD player, and this model is verified by experiment. From frequency response, response, we investigate the natural frequency and mode shape in the up/down direction. In order to determine the analysis frequency band, we investigate the excitation frequency from the vehicle test. As the characteristics of damper and spring is changed, we carry out the vibration test(transmissibility) and investigate the change of transmissibility.

  • PDF

Efficient Channel Delay Estimation for OFDM Systems over Doubly-Selective Fading Channels

  • Heo, Seo Weon;Lim, Jongtae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2218-2230
    • /
    • 2012
  • In this paper, we propose an efficient channel delay estimation method for orthogonal frequency-division multiplexing (OFDM) systems, especially over doubly-selective fading channels which are selective in both the symbol time domain and subcarrier frequency domain. For the doubly-selective fading channels in single frequency network (SFN), long and strong echoes exist and thus the conventional discrete Fourier Transform (DFT) based channel delay estimation system often fails to produce the exact channel delay profile. Based on the analysis of the discrete-time frequency response of the channel impulse response (CIR) coefficients in the DFT-based channel delay estimation system, we develop a method to effectively extract the true CIR from the aliased signals by employing a simple narrow-band low-pass filter (NB-LPF). The performance of the proposed system is verified using the COST207 TU6 SFN channel model.