• Title/Summary/Keyword: frequency optimization

Search Result 1,206, Processing Time 0.026 seconds

Optimization of Engine Mount Using an Enhanced Genetic Algorithm (향상된 유전알고리듬을 이용한 유체마운트의 최적화)

  • Ahn, Young-Kong;Kim, Young-Chan;Yang, Bo-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.935-942
    • /
    • 2002
  • When designing fluid mounts, design parameters can be varied in order to obtain a desired notch frequency and notch depth. The notch frequency is a function of the mount parameters and is typically selected by the designer to occur at the vibration disturbance frequency. Since the process of choosing these parameters can involve some trial and error, it seems to be a great application for obtaining optimal performance of the mount. Many combinations of parameters are possible to give us the desired notch frequency, but the question is which combination provides the lowest depth. Therefore. an automatic optimal technique is needed to optimize the performance of the fluid mount. In this study. the enhanced genetic algorithm (EGA) is applied to minimizing transmissibility of a fluid mount at the desired notch frequency, and at the notch and resonant frequencies. The EGA is modified genetic algorithm to search global and local optimal solutions of multi-modal function optimization. Furthermore. to reduce the searching time as compare to conventional genetic algorithm and Increase the precision of the solutions, the modified simplex method is combined with the algorithm. The results show that the performance of the optimized mount by using the hybrid algorithm is better than that of the conventional fluid mount.

A Comparative Study on the PSO and APSO Algorithms for the Optimal Design of Planar Patch Antennas (평면형 패치 안테나의 최적설계를 위한 PSO와 APSO 알고리즘 비교 연구)

  • Kim, Koon-Tae;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1578-1583
    • /
    • 2013
  • In this paper, stochastic optimization algorithms of PSO (Particle Swarm Optimization) and APSO (Adaptive Particle Swam Optimization) are studied and compared. It is revealed that the APSO provides faster convergence and better search efficiency than the conventional PSO when they are adopted to find the global minimum of a two-dimensional function. The advantages of the APSO comes from the ability to control the inertia weight, and acceleration coefficients. To verify that the APSO is working better than the standard PSO, the design of a 10GHz microstrip patch as one of the elements of a high frequency array antenna is taken as a test-case and shows the optimized result with 5 iterations in the APSO and 28 iterations in th PSO.

PID Control Design with Exhaustive Dynamic Encoding Algorithm for Searches (eDEAS)

  • Kim, Jong-Wook;Kim, Sang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.691-700
    • /
    • 2007
  • This paper proposes a simple but effective design method of PID control using a numerical optimization method. In order to achieve both stability and performance, gain and phase margins and performance indices of step response directly compose of the cost function. Hence, the proposed approach is a multiobjective optimization problem. The main effectiveness of this approach results from the strong capability of the used optimization method. A one-dimensional example concerning gain margin illustrates the practical applicability of the optimization method. The present approach has many degrees of freedom in controller design by only adjusting related weight constants. The attained PID controller is compared with Wang#s and Ho#s methods, IAE, and ISE for a high-order process, and the simulation result for various design targets shows that the proposed approach achieves desired time-domain performance with a guarantee of frequency-domain stability.

Multidisciplinary Design Optimization of Engine Mount with Considering Driveline (구동계를 고려한 엔진 마운트의 다분야 통합 최적설계)

  • 서명원;심문보;김문성;홍석길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.209-217
    • /
    • 2002
  • This gaper discusses a multidisciplinary design optimization of the engine mounting system to improve the ride quality of a vehicle and to remove the possibility of the resonance between the powertrain system and vehicle systems. The driveline model attempts to support engine mount development by providing sufficient detail for design modification assessment in a modeling environment. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is both decoupling the roll mode ova powertrain and minimizing the vibration transmitted to the vehicle including the powertrain, simultaneously. By applying forced vibration analysis for vehicle systems and mode decouple analysis for the engine mount system, it is shown that improved optimization result is obtained.

Optimization of Body Section usign Hybrid Model (혼합모델을 이용한 차체 단면의 최적화 방법에 관한 연구)

  • 고병식
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.437-443
    • /
    • 2000
  • The optimal design problem for increasing dynamic stiffness using hybrid model which composed of original detailed BIW(body in white) and impinged beam elements is investigated. Using the characteristics of the beam elements and design sensitivity analysis this approach utilizes an optimization technique to determine the optimal section properties of beam elements. The constraint is to increase the first natural frequency by five percent compared with original one. The results show that the first torsion and bending natural frequencies are increased by five percent using hybrid model and optimization. These results indicate that this optimization method can be employed to enhance the dynamic stiffness of vehicle body structure in design concept stage.

  • PDF

Dynamic Analysis and Optimum Design of Suspensions for Information Storage Devices (정보저장기기 서스펜션의 동특성 해석 및 최적설계)

  • Kim, Yun-Sik;Lee, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.576-581
    • /
    • 2002
  • The suspension is a structure that supports reading, writing head in information storage device. In order to develop the information storage device of high track density, it is necessary to study about the suspension. To satisfy operation condition of information storage device, the suspension shape is very important since it correlates to dynamic characteristics. Therefore, it is necessary to analyze the dynamic characteristics by using finite element analysis and to optimize the suspension of information storage device using size optimization and topology optimization. The suspension has various modes according to different kinds of frequency bandwidth. Sway mode and second torsion mode are especially critical among them. In this paper, we investigated method to improve bandwidth of sway and second torsion mode of HDD and ODD suspension by using size optimization and topology optimization.

  • PDF

Design of a Swing-arm Actuator using the Compliant Mechanism - Multi-objective Optimal Design Considering the Stiffness Effect (컴플라이언트 메커니즘을 이용한 스윙 암 액추에이터의 설계 - 강성 효과를 고려한 다중목적 최적화 설계 -)

  • Lee Choong-yong;Min Seungjae;Yoo Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.128-134
    • /
    • 2006
  • Topology optimization is an effective scheme to obtain the initial design concept: however, it is hard to apply in case of non-linear or multi-objective problems. In this study, a modified topology optimization method is proposed to generate a structure of a swing arm type actuator satisfying maximum compliance as well. as maximum stiffness using the multi-objective optimization. approach. The multi-objective function is defined to maximize the compliance in the direction of focusing of the actuator and the second eigen-frequency of the structure. The design of experiments are performed and the response surface functions are formulated to construct the multi-objective function. The weighting factors between conflicting functions are determined by the back-error propagation neural network and the solution of multi-objective function is acquired using the genetic algorithm.

Underwater Acoustic Lens Design Using Topology Optimization (위상최적화를 이용한 수중음향렌즈의 설계)

  • Jang, Gang-Won;Tran, Quang Dat;Cho, Wan-Ho;Kwon, Hyu-Sang;Cho, Seung Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.555-556
    • /
    • 2014
  • In this paper, topology optimization of two-dimensional acoustic lenses is presented by using the phase field method. The objective of the optimization is to maximize the acoustic pressure at a specified domain inside the acoustic domain for a given frequency, and the constraint is imposed on the amount of the material of the acoustic lens. Topology optimization of two-dimensional acoustic lenses are obtained as the steady state of the phase transition described by the Allen-Cahn equation. The Helmholtz equation modeling the wave propagation is solved by using a finite element method. The effectiveness of the proposed method is verified by applying it for several two-dimensional acoustic lens system design problems.

  • PDF

Multi-swarm fruit fly optimization algorithm for structural damage identification

  • Li, S.;Lu, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.409-422
    • /
    • 2015
  • In this paper, the Multi-Swarm Fruit Fly Optimization Algorithm (MFOA) is presented for structural damage identification using the first several natural frequencies and mode shapes. We assume damage only leads to the decrease of element stiffness. The differences on natural frequencies and mode shapes of damaged and intact state of a structure are used to establish the objective function, which transforms a damage identification problem into an optimization problem. The effectiveness and accuracy of MFOA are demonstrated by three different structures. Numerical results show that the MFOA has a better capacity for structural damage identification than the original Fruit Fly Optimization Algorithm (FOA) does.

Stiffener Layout Optimization to Maximize Natural Frequencies of a Curved Three-Dimensional Shell Structure (구부러진 3차원 박판 구조물의 고유 진동수 극대화를 위한 보강재 배치 최적화)

  • Lee, Joon-Ho;Park, Youn-Sik;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.954-957
    • /
    • 2004
  • Based on the authors' previous work, where a geometric constraint handling technique for stiffener layout optimization problem using geometry algorithms was proposed, stiffener layout optimization to maximize natural frequencies of a curved three-dimensional shell structure was performed with a projection method. The original geometry of the shell structure was first projected on a two-dimensional plane, and then the whole optimization process was performed with the projected geometry of the shell except that the original shell structure was used for the eigenproblem solving. The projection method can be applied to baseline structures with a one-to-one correspondence between original and projected geometries such as automobile hoods and roofs.

  • PDF