KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.5
/
pp.1610-1629
/
2021
Failures frequently occurred in manufacturing machines due to complex and changeable manufacturing environments, increasing the downtime and maintenance costs. This manuscript develops a novel deep learning-based method named Multi-Domain Convolutional Neural Network (MDCNN) to deal with this challenging task with vibration signals. The proposed MDCNN consists of time-domain, frequency-domain, and statistical-domain feature channels. The Time-domain channel is to model the hidden patterns of signals in the time domain. The frequency-domain channel uses Discrete Wavelet Transformation (DWT) to obtain the rich feature representations of signals in the frequency domain. The statistic-domain channel contains six statistical variables, which is to reflect the signals' macro statistical-domain features, respectively. Firstly, in the proposed MDCNN, time-domain and frequency-domain channels are processed by CNN individually with various filters. Secondly, the CNN extracted features from time, and frequency domains are merged as time-frequency features. Lastly, time-frequency domain features are fused with six statistical variables as the comprehensive features for identifying the fault. Thereby, the proposed method could make full use of those three domain-features for fault diagnosis while keeping high distinguishability due to CNN's utilization. The authors designed massive experiments with 10-folder cross-validation technology to validate the proposed method's effectiveness on the CWRU bearing data set. The experimental results are calculated by ten-time averaged accuracy. They have confirmed that the proposed MDCNN could intelligently, accurately, and timely detect the fault under the complex manufacturing environments, whose accuracy is nearly 100%.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.2
/
pp.713-725
/
2022
Mostly, artificial intelligence does not show any definite change in emotions. For this reason, it is hard to demonstrate empathy in communication with humans. If frequency modification is applied to neutral emotions, or if a different emotional frequency is added to them, it is possible to develop artificial intelligence with emotions. This study proposes the emotion conversion using the Generative Adversarial Network (GAN) based voice frequency synthesis. The proposed method extracts a frequency from speech data of twenty-four actors and actresses. In other words, it extracts voice features of their different emotions, preserves linguistic features, and converts emotions only. After that, it generates a frequency in variational auto-encoding Wasserstein generative adversarial network (VAW-GAN) in order to make prosody and preserve linguistic information. That makes it possible to learn speech features in parallel. Finally, it corrects a frequency by employing Amplitude Scaling. With the use of the spectral conversion of logarithmic scale, it is converted into a frequency in consideration of human hearing features. Accordingly, the proposed technique provides the emotion conversion of speeches in order to express emotions in line with artificially generated voices or speeches.
Joint time-frequency images of the broadband acoustic echoes of six fish species were obtained using the smoothed pseudo-Wigner-Ville distribution (SPWVD). The acoustic features were extracted by changing the sliced window widths and dividing the time window by a 0.02-ms interval and the frequency window by a 20-kHz bandwidth. The 22 spectrum amplitudes obtained in the time and frequency domains of the SPWVD images were fed as input parameters into an artificial neural network (ANN) to verify the effectiveness for species-dependent features related to fish species identification. The results showed that the time-frequency approach improves the extraction of species-specific features for species identification from broadband echoes, compare with time-only or frequency-only features. The ANN classifier based on these acoustic feature components was correct in approximately 74.5% of the test cases. In the future, the identification rate will be improved using time-frequency images with reduced dimensions of the broadband acoustic echoes as input for the ANN classifier.
Choi, Young Ho;Ban, Sung Min;Kim, Kyung-Wha;Kim, Hyung Soon
Phonetics and Speech Sciences
/
v.7
no.1
/
pp.3-10
/
2015
In this paper, different frequency scales in cepstral feature extraction are evaluated for the text-independent speaker recognition. To this end, mel-frequency cepstral coefficients (MFCCs), linear frequency cepstral coefficients (LFCCs), and bilinear warped frequency cepstral coefficients (BWFCCs) are applied to the speaker recognition experiment. In addition, the spectro-temporal features extracted by the cepstral-time matrix (CTM) are examined as an alternative to the delta and delta-delta features. Experiments on the NIST speaker recognition evaluation (SRE) 2004 task are carried out using the Gaussian mixture model-universal background model (GMM-UBM) method and the joint factor analysis (JFA) method, both based on the ALIZE 3.0 toolkit. Experimental results using both the methods show that BWFCC with appropriate warping factor yields better performance than MFCC and LFCC. It is also shown that the feature set including the spectro-temporal information based on the CTM outperforms the conventional feature set including the delta and delta-delta features.
Lijun Zhao;Ke Wang;Jinjing, Zhang;Jialong Zhang;Anhong Wang
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.8
/
pp.2068-2082
/
2023
With the rapid development of deep learning, Depth Map Super-Resolution (DMSR) method has achieved more advanced performances. However, when the upsampling rate is very large, it is difficult to capture the structural consistency between color features and depth features by these DMSR methods. Therefore, we propose a color-image guided DMSR method based on iterative depth feature enhancement. Considering the feature difference between high-quality color features and low-quality depth features, we propose to decompose the depth features into High-Frequency (HF) and Low-Frequency (LF) components. Due to structural homogeneity of depth HF components and HF color features, only HF color features are used to enhance the depth HF features without using the LF color features. Before the HF and LF depth feature decomposition, the LF component of the previous depth decomposition and the updated HF component are combined together. After decomposing and reorganizing recursively-updated features, we combine all the depth LF features with the final updated depth HF features to obtain the enhanced-depth features. Next, the enhanced-depth features are input into the multistage depth map fusion reconstruction block, in which the cross enhancement module is introduced into the reconstruction block to fully mine the spatial correlation of depth map by interleaving various features between different convolution groups. Experimental results can show that the two objective assessments of root mean square error and mean absolute deviation of the proposed method are superior to those of many latest DMSR methods.
Kim, Jeong-Tae;Park, Jae-Hyung;Yoon, Han-Sam;Yi, Jin-Hak
Smart Structures and Systems
/
v.3
no.3
/
pp.263-280
/
2007
In this paper, an improved GA-based damage detection algorithm using a set of combined modal features is proposed. Firstly, a new GA-based damage detection algorithm is formulated for beam-type structures. A schematic of the GA-based damage detection algorithm is designed and objective functions using several modal features are selected for the algorithm. Secondly, experimental modal tests are performed on free-free beams. Modal features such as natural frequency, mode shape, and modal strain energy are experimentally measured before and after damage in the test beams. Finally, damage detection exercises are performed on the test beam to evaluate the feasibility of the proposed method. Experimental results show that the damage detection is the most accurate when frequency changes combined with modal strain-energy changes are used as the modal features for the proposed method.
In general, the informations of the inner image that user interested in are limited to a special domain. In this paper, as using Wavelet Transform for dividing image into high frequency and low frequency, We can separate foreground including many data. After calculating object boundary of separated part, We extract special features using Color Coherence Vector. According to results of this experiment, the method of comparing data extracting foreground features is more effective than comparing data extracting features of entire image when we extract the image user interested in.
The aim of the present study is to investigate how the phonemic characteristics influence on the disfluencies of children and adults who stutter. The participants were 10 children(9 boys and 1 girl) and 10 male adults. After having the participants to read out the Paradise-Fluency Assessment(Sim, Shin & Lee, 2004) passages, each of the productions were divided into syllables and words, and then the frequencies and the ratios of their disfluenceis were analyzed according to the specified phonemic features. In terms of the frequency of the disfluency, the participants stuttered more in the words which start with consonant than vowel. But they showed more disfluencies in the words initiated with vowel than consonant when the ratio of each phoneme's presences were considered. There found different tendencies among the phonemic features related with their disfluencies occuring with ralatively high frequency or ratio. It was difficult to find out the exact relationships among the order of the sound acquisition, phonemic complexity, and the disfluencies. To study the exact influence of the phonemic features upon the disfluencies, it comes important to consider the frequency of the stuttering itself together with the ratio of the disfluencies in which the opportunity of the specific sound's presence was considered. To compare the results of the different studies which has similar purposes, it seems important to consider the tasks and the methodologies in depth.
Compared to normal speech, distant-talking speech is characterized by the acoustic effect due to interfering sound and echoes as well as articulatory changes resulting from the speaker's effort to be more intelligible. In this paper, the acoustic features for distant-talking speech due to the articulatory changes will be analyzed and compared with those of the Lombard effect. In order to examine the effect of different distances and articulatory changes, speech recognition experiments were conducted for normal speech as well as distant-talking speech at different distances using HTK. The speech data used in this study consist of 4500 distant-talking utterances and 4500 normal utterances of 90 speakers (56 males and 34 females). Acoustic features selected for the analysis were duration, formants (F1 and F2), fundamental frequency, total energy and energy distribution. The results show that the acoustic-phonetic features for distant-talking speech correspond mostly to those of Lombard speech, in that the main resulting acoustic changes between normal and distant-talking speech are the increase in vowel duration, the shift in first and second formant, the increase in fundamental frequency, the increase in total energy and the shift in energy from low frequency band to middle or high bands.
Today we have excellent motor drive system using high frequency carrier PWM control voltage source inverter in the other hand, we have met serious problems caused by high frequency switching. PWM Cyclo-converter called Matrix converter is expected as the new strategy Possible to improve these problems and add some more convenient features suitable for new drive system. in this Paper, we will introduce the background, features and outline of this converter, and additionally introduce some remarkable activity on this converter
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.