• Title/Summary/Keyword: frequency counting

Search Result 111, Processing Time 0.204 seconds

Four-Year-Old Children's Counting Skills and Their Mothers' Use of Number Words: The Mediating Role of Children's Number Word Use (4세 유아의 수세기 기술과 어머니의 수 단어 사용: 유아 수 단어 사용의 매개효과)

  • Jihyeon Park;Youjeong Park;Yujin Lee;Sunjung Baik;Sukyoung Choe
    • Korean Journal of Childcare and Education
    • /
    • v.19 no.6
    • /
    • pp.79-95
    • /
    • 2023
  • Objective: This study examines the relationships among four-year-olds' counting skills, their use of number words, and their mothers' use of number words during mother-child free play. Specifically, we assess whether children's use of number words mediates the relationship between their counting skills and their mothers' use of number words during play. Methods: Forty-two 4-year-old children and their mothers were asked to play freely with a given set of toys at their home for 10 minutes. Children also completed a counting skill test. Frequencies of number word use were calculated for mothers and children from transcriptions of the free play. Results: Children's counting skills, the frequency of their number word use, and their mothers' frequency of number word use were positively correlated with each other. Additionally, the frequency of children's number-word use completely mediated the relationship between their counting skills and their mothers' frequency of number-word use. Conclusion/Implications: The results suggest that children's use of number language may play a crucial role in the provision of number-related language input by parents, based on their children's math skills. Practical implications of the findings are discussed.

Heterodyne Optical Interferometer using Dual Mode Phase Measurement

  • Yim, Noh-Bin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.81-88
    • /
    • 2001
  • We present a new digital phase measuring method for heterodyne optical interferometry, which providers high measuring speed up to 6 m/s with a fine displacement resolution of 0.1 nanometer. The key idea is combining two distinctive digital phase measuring techniques with mutually complementary characteristics to earth other one is counting the Doppler shift frequency counting with 20 MHz beat frequency for high-velocity measurement and the other is the synchronous phase demodulation with 2.0 kHz beat frequency for extremely fine displacement resolution. The two techniques are operated in switching mode in accordance wish the object speed in a synchronized way. Experimental results prove that the proposed dual mode phase measuring scheme is realized with a set of relatively simple electronic circuits of beat frequency shifting, heterodyne phase detection. and low-pass filtering.

  • PDF

Enhanced Coulomb Counting Method for State-of-Charge Estimation of Lithium-ion Batteries based on Peukert's Law and Coulombic Efficiency

  • Xie, Jiale;Ma, Jiachen;Bai, Kun
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.910-922
    • /
    • 2018
  • Conventional battery state-of-charge (SoC) estimation methods either involve sophisticated models or consume considerable computational resource. This study constructs an enhanced coulomb counting method (Ah method) for the SoC estimation of lithium-ion batteries (LiBs) by expanding the Peukert equation for the discharging process and incorporating the Coulombic efficiency for the charging process. Both the rate- and temperature-dependence of battery capacity are encompassed. An SoC mapping approach is also devised for initial SoC determination and Ah method correction. The charge counting performance at different sampling frequencies is analyzed experimentally and theoretically. To achieve a favorable compromise between sampling frequency and accumulation accuracy, a frequency-adjustable current sampling solution is developed. Experiments under the augmented urban dynamometer driving schedule cycles at different temperatures are conducted on two LiBs of different chemistries. Results verify the effectiveness and generalization ability of the proposed SoC estimation method.

Domain Analysis on Economics by Utilizing Cocitation Analysis of Multiple Authorship (복수저자기반 동시인용분석을 활용한 지적구조 분석: 경제학 분야를 중심으로)

  • Kwak, Sun-Young;Chung, Eun-Kyung
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.1
    • /
    • pp.115-134
    • /
    • 2012
  • The author co-citation analysis is generally based on the frequency of the first author because most citation databases include only the first author in the bibliographic information. In this sense, the purpose of this study is to provide a better knowledge structure by utilizing the multiple authorship of author co-citation analysis. To achieve the purpose of this study, four different data sets are prepared: (1) counting the first author, (2) counting all the author without limiting the total frequency, (3) counting all the author with limiting the total frequency, and (4) counting adjusted frequencies based on the order of author subscription. The findings of this study show that there are clear differences between the knowledge structure counting all the author and the one counting only the first author. In addition, depending on the different methods, there are subtle changes of cluster members for authors.

Navigation based Motion Counting Algorithm for a Wearable Smart Device (항법 기반 웨어러블 스마트 디바이스 동작 카운트 알고리즘)

  • Park, So Young;Lee, Min Su;Song, Jin Woo;Park, Chan Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.547-552
    • /
    • 2015
  • In this paper, an ARS-EKF based motion counting algorithm for repetitive exercises such as calisthenics is proposed using a smartwatch. Raw sensor signals from accelerometers and gyroscopes are widely used for conventional smartwatch counting algorithms based on pattern recognition. However, generated features from raw data are not intuitive to reflect the movement of motions. The proposed motion counter algorithm is composed of navigation based feature generation and counting with error correction. The candidate features for each activity are velocity and attitude calculated through an ARS-EKF algorithm. In order to select those features which reveal the characteristics of each motion, an exercise frame from the initial sensor frame is introduced. Counting processes are basically based on the zero crossing method, and misdetected counts are eliminated via simple classification algorithms considering the frequency of the counted motions. Experimental results show that the proposed algorithm efficiently and accurately counts the number of exercises.

Development of a Contact-Type Counting Device Using a Piezoelectric Film as a Sensor (압전필름을 센서로 사용한 접촉식 계수장치 개발)

  • Yoo, Wan-Dong;Kim, Jin-Oh;Park, Kwang-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.239-247
    • /
    • 2005
  • This paper deals with the development of a contact-type counting device using a piezoelectric polymer film as a sensor. The piezoelectric and vibration characteristics of the film under a bending vibration were investigated theoretically and experimentally. A counting device, which includes filters, an amplifier, an analog-digital converter, and a display, was designed and fabricated. The performance of the piezoelectric polymer sensor was evaluated in the sense of the responses to contact force, contact frequency, and contact speed. The life and the temperature effect were also investigated for the piezoelectric film sensor.

Fatigue Damage Analysis Using Rainflow Counting Method (Rainflow Counting방법을 이용한 피로 손상 해석)

  • Kim, Jung-Hun;Lee, Hak;Zi, Goang-Seup;Park, Byung-Hoon;Kong, Jung-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.387-392
    • /
    • 2007
  • The loss of strength in an aircraft structure as a result of cyclic stress over a period of life time is an important phenomenon for aircraft analysis. Load/stress spectrum can be constructed from the occurrence frequency based on the load/stress histories during a service lifetime. In this paper, three types of fatigue spectrum was compared. The rainflow counting method was applied to concentrate the stress spectrum obtained from the flight loads recorder(FLDR). A fatigue analysis for different stress spectrum was performed by using LUSAS computer application.

  • PDF

Development of a Counting Device Using a Piezoelectric Sensor (압전 센서를 사용한 계수 장치 개발)

  • Yoo, Wan-Dong;Kim, Jin-Oh;Park, Kwang-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1089-1092
    • /
    • 2004
  • This paper deals with the development of a contact-type counting device using a piezoelectric polymer film as a sensor. The piezoelectric and vibration characteristics of the film under a bending vibration were investigated theoretically and experimentally. A counting device, which includes filters, an amplifier, an analog-digital converter, and a display, was designed and fabricated. The performance of the piezoelectric polymer sensor was evaluated in the sense of the responses to contact force, contact frequency, and contact speed. The life and the temperature effect were also investigated for the piezoelectric film sensor.

  • PDF

Fault Detection of Rolling Element Bearing for Low Speed Machine Using Wiener Filter and Shock Pulse Counting (위너 필터와 충격 펄스 카운팅을 이용한 저속 기계용 구름 베어링의 결함 검출)

  • Park, Sung-Taek;Weon, Jong-Il;Park, Sung Bum;Woo, Heung-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.12
    • /
    • pp.1227-1236
    • /
    • 2012
  • The low speed machinery faults are usually caused by the bearing failure of the rolling elements. As the life time of the bearing is limited, the condition monitoring of bearing is very important to maintain the continuous operation without failures. A few monitoring techniques using time domain, frequency domain and fuzzy neural network vibration analysis are introduced to detect and diagnose the faults of the low speed machinery. This paper presents a method of fault detection for the rolling element bearing in the low speed machinery using the Wiener filtering and shock pulse counting techniques. Wiener filter is used for noise cancellation and it clearly makes the shock pulse emerge from the time signal with the high level of noise. The shock pulse counting is used to determine the various faults obviously from the shock signal with transient pulses not related with the bearing fault. Machine fault simulator is used for the experimental measurement in order to verify this technique is the powerful tool for the low speed machine compared with the frequency analysis. The test results show that the method proposed is very effective parameter even for the signal with high contaminated noise, speed variation and very low energy. The presented method shows the optimal tool for the condition monitoring purpose to detect the various bearing fault with high accuracy.

Fatigue life prediction of horizontally curved thin walled box girder steel bridges

  • Nallasivam, K.;Talukdar, Sudip;Dutta, Anjan
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.387-410
    • /
    • 2008
  • The fatigue damage accumulation rates of horizontally curved thin walled box-girder bridge have been estimated from vehicle-induced dynamic stress history using rain flow cycle counting method in the time domain approach. The curved box-girder bridge has been numerically modeled using computationally efficient thin walled box-beam finite elements, which take into account the important structural actions like torsional warping, distortion and distortional warping in addition to the conventional displacement and rotational degrees of freedom. Vehicle model includes heave-pitch-roll degrees of freedom with longitudinal and transverse input to the wheels. The bridge deck unevenness, which is taken as inputs to the vehicle wheels, has been assumed to be a realization of homogeneous random process specified by a power spectral density (PSD) function. The linear damage accumulation theory has been applied to calculate fatigue life. The fatigue life estimated by cycle counting method in time domain has been compared with those found by estimating the PSD of response in frequency domain. The frequency domain method uses an analytical expression involving spectral moment characteristics of stress process. The effects of some of the important parameters on fatigue life of the curved box bridge have been studied.