• Title/Summary/Keyword: frequency characteristics

Search Result 14,492, Processing Time 0.037 seconds

Power Spectrum Estimation on the Signals with Low Frequency (저주파진동 해석을 위한 데이터처리기법 연구)

  • 천영수;조남규;이리형
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.185-193
    • /
    • 1997
  • A major problem of frequency analysis in the field of low-frequencies such as building or construction vibration is the way of signal processing which is appropriate to obtain included frequency content from the finite process to be measured. Therefore, it is the aim of the investigation reported herein to develop the signal processing algorithm which is analyzed without losing the reliability of the measurements in low-frequency domain. To accomplish the research objective, it was analyzed the problems on the way of signal processing in low-frequency domain, and compared the response characteristics of FFT with those of MEM (Maximum Entropy Method) about the low-frequency of vibration. This evaluation of the response characteristics is used in determining appropriate signal processing algorithm into the low-frequency domain.

  • PDF

A Novel Auxiliary Edge-Resonant Snubber-Assisted Soft Switching PWM High Frequency Inverter with Series Capacitor Compensated Resonant Load for Consumer Induction Heating

  • Ahmed Nabil A.;Iwai Toshiaki;Omori Hideki;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.95-103
    • /
    • 2006
  • In this paper, a novel prototype of auxiliary switched capacitor assisted voltage source soft switching PWM Single-Ended Push Pull (SEPP) series capacitor compensated load resonant inverter with two auxiliary edge resonant lossless inductor snubbers is proposed and discussed for small scale consumer high-frequency induction heating (IH) appliances. The operation principle of this inverter is described by using switching mode equivalent circuits. The newly developed multi resonant high-frequency inverter using trench gate IGBTs can regulate its output AC power via constant frequency edge-resonant associated soft switching commutation by using an asymmetrical PWM control or duty cycle control scheme. The brand-new consumer IH products which use the newly proposed edge-resonant soft switching PWM-SEPP type series load resonant high-frequency inverters are evaluated using power regulation characteristics, actual efficiency vs. duty cycle and input power vs. actual efficiency characteristics. Their operating performance compared with some conventional soft switching high-frequency inverters for IH appliances is discussed on the basis of simulation and experimental results. The practical effectiveness of the newly proposed soft switching PWM SEPP series load resonant inverter is verified from an application point of view as being suitable for consumer high-frequency IH appliances.

Pulse Density Modulated Zero Voltage Soft-Switching High-Frequency Inverter with Single Switch for Xenon Gas Dielectric Barrier Discharge Lamp Dimming

  • Sugimura, Hisayuki;Suh, Ki-Young;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.391-394
    • /
    • 2006
  • This paper presents soft switching zero voltage switching high frequency inverter for rare gas fluorescent lamp using dielectric-barrier discharge phenomenon. The simple high-frequency inverter can completely achieve stable zero voltage soft switching (ZVS) commutation for wide its output power regulation ranges and load variations under its constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operating principle is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZVS operation commutation, together with its output effective power regulation characteristics-based on the high frequency PDM strategy. The experimental operating performances of this high frequency Inverter are illustrated as compared with computer simulation results and experimental ones. Its light dimming characteristics due to power regulation scheme are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliance implemented here is proven from the practical point of view.

  • PDF

Evaluation of MCC seismic response according to the frequency contents through the shake table test

  • Chang, Sung-Jin;Jeong, Young-Soo;Eem, Seung-Hyun;Choi, In-Kil;Park, Dong-Uk
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1345-1356
    • /
    • 2021
  • Damage to nuclear power plants causes human casualties and environmental disasters. There are electrical facilities that control safety-related devices in nuclear power plants, and seismic performance is required for them. The 2016 Gyeongju earthquake had many high-frequency components. Therefore, there is a high possibility that an earthquake involving many high frequency components will occur in South Korea. As such, it is necessary to examine the safety of nuclear power plants against an earthquake with many high-frequency components. In this study, the shaking table test of electrical facilities was conducted against the design earthquake for nuclear power plants with a large low-frequency components and an earthquake with a large high-frequency components. The response characteristics of the earthquake with a large high-frequency components were identified by deriving the amplification factors of the response through the shaking table test. In addition, safety of electrical facility against the two aforementioned types of earthquakes with different seismic characteristics was confirmed through limit-state seismic tests. The electrical facility that was performed to the shaking table test in this study was a motor control center (MCC).

Implementation of Digital Frequency Synthesizer for High Speed Frequency Hopping (DDS를 이용한 고속 주파수 Hopping용 디지털 주파수 합성기 구현)

  • Kim Young-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.607-610
    • /
    • 2006
  • The Digital Frequency Synthesizer(DFS) that generates the wideband signal with hish speed frequency hopping rate and high frequency resolution characteristics was implemented in this paper. The DFS was applied as local oscillator for direct frequency conversion IF modules of DVB-RCS, which directly generates the transmission immediate frequency signal by using DDS and wideband PLL technologies. The DDS technology provides high speed frequency hopping rate and high frequency resolution characteristics, which ate also the DVB-RCS requirement. The wideband PLL technology also provides the wideband signal generation, which is a necessity for direct frequency conversion modules. The implemented DFS provide the spurious suppression characteristic of -50 dBc, frequency resolution of 0.233 Hz and frequency hopping rate of 125 ns, respectively. Also the DFS represent the amplitude flatness of 3 dB and less in the pass-band and phase noise characteristic of -75 dBc/Hz at 1 kHz frequency offset.

  • PDF

Coupled foot-shoe-ground interaction model to assess landing impact transfer characteristics to ground condition

  • Kim, S.H.;Cho, J.R.;Choi, J.H.;Ryu, S.H.;Jeong, W.B.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.75-90
    • /
    • 2012
  • This paper investigates the effects of sports ground materials on the transfer characteristics of the landing impact force using a coupled foot-shoe-ground interaction model. The impact force resulting from the collision between the sports shoe and the ground is partially dissipated, but the remaining portion transfers to the human body via the lower extremity. However, since the landing impact force is strongly influenced by the sports ground material we consider four different sports grounds, asphalt, urethane, clay and wood. We use a fully coupled 3-D foot-shoe-ground interaction model and we construct the multi-layered composite ground models. Through the numerical simulation, the landing impact characteristics such as the ground reaction force (GRF), the acceleration transfer and the frequency response characteristics are investigated for four different sports grounds. It was found that the risk of injury, associated with the landing impact, was reduced as the ground material changes from asphalt to wood, from the fact that both the peak vertical acceleration and the central frequency monotonically decrease from asphalt to wood. As well, it was found that most of the impact acceleration and frequency was dissipated at the heel, then not much changed from the ankle to the knee.

Jury Evaluation Test for Annoyance Response of KTX(Korea Train Express) and Ordinary Train Noise (고속철도와 일반철도소음의 성가심 반응에 대한 청감실험 비교 연구)

  • Chun, Hyung-Joon;Kim, Deuk-Sung;Ko, Joon-Hee;Chang, Seo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.335-344
    • /
    • 2008
  • In recent years, public complaints against railroad noise by KTX and Ordinary train have been rising. Regulation of railways noise uses same standard without distinguishing the type of railroad cars. According to the type of railroad cars, the frequency characteristics of emitting noise is different. Therefore it is requested to know how the public response vary to each types of railroad cars. The noise annoyance from three types of trains(KTX, electric train, diesel train) was analyzed by jury evaluation test for assessing the effect of frequency characteristics. The numerical results by a semantic differential method showed that annoyance response to three type of trains depended on the frequency characteristics. As a result, this study proposed that the KTX could have a bonus level of maximum 2.9 dB(A) compared to ordinary train.

Frequency Response Characteristics of Two-Staged Gear Reduction Servo System According to the Backlash Contribution Ratio Variation of Each Gear Reduction Stage (감속단 백래시 기여율 변화에 따른 2단 기어 감속서보 시스템의 주파수 응답 특성)

  • Baek, Joo-Hyun;Hong, Sung-Min;Yang, Tae-Suk;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.103-109
    • /
    • 2002
  • The paper investigates the change of frequency response characteristics on two-stage gear reduction servo system according to the variation of backlash amount of each gear reduction stage, under the condition that the backlash of total system is constant. It is shown that the frequency response characteristics of the system heavily depend on the contribution ratio which is defined as a ratio of the first backlash amount to the total backlash. It is also found that there is an optimal backlash combination to maximize the bandwidth of two-stage gear reduction servo system when the allowable total backlash is determined.

Analysis of the Actuator Winding to a Frequency Characteristic based on Energy Conversion Theory (에너지 변환 이론에 의한 액추에이터 권선부의 주파수 특성 해석에 관한 연구)

  • 김양호;이해경;황석영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.4
    • /
    • pp.83-87
    • /
    • 2004
  • In this paper, an electrical equivalent circuit is derived by solving system equations. A frequency characteristics graph is calculated and the characteristics curve of the linear Actuator Model System are simulated by the Matlab program The frequency characteristics of a linear actuator are analyzed on the structure of the linear Actuator Model System This paper proposed and analyzed the linear Actuator Model(LAM) by using Matlab program with linear actuator was verified computer simulation based on the energy conversion theory.

A study on the characteristics of torsional vibration for 4*4 vehicles drivetrain (4륜구동 차량구동계의 비틀림진동 특성에 관한 연구)

  • Choi, Eun-O;Kim, Hei-Song;Hong, Dong-Pyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1957-1964
    • /
    • 1997
  • Torsional vibration is to vibrate strongly when the ignition pulses of the engine is excited with natural frequency of driveline. Torsional vibration like this can cause various noises as rattle and booming. For this study multi-degree of freedom analysis model of torsional vibration, which is combined with mass moment of inertia and torsional spring, was developed toward two wheel drive, four wheel drive and torsional vibration characteristics were compared and analyzed through the natural frequences, mode shapes and frequency response characteristics which was acquired by the simulation of it. The pertinence of that model was proved by the field test and the outcome of the simulations coincided with feeling test. Therefore, four wheel drive simulation model is considered to be useful thing for reducing torsional vibration of driveline and developing full-time four wheel drive vehicles.