• Title/Summary/Keyword: freezing, thawing

Search Result 926, Processing Time 0.034 seconds

Investigation on the Method of Evaluating the Resistance to Freezing and Thawing of Concrete Subjected Initial Frost Damage (초기동해를 받은 콘크리트의 내동해성 평가법에 대한 검토)

  • 고경택;장일영
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.117-127
    • /
    • 1999
  • In concrete incorporating high volume ground granulated blast-furnace slag that has frozen at early age, to evaluated the results of resistance to freezing and thawing is very difficult because the hydration of the concrete increases over the duration of rapid freezing and thawing test. Hence, the dynamic modulus of elasticity of specimens after freezing and thawing will be favorable results unless the hydration effect is taken into consideration. In this study, a method of evaluating to the resistance to freezing and thawing of concrete subjected freezing at early age, in which the effect of hydration is modified for its increase during rapid freezing and thawing test, is investigated.

An Experimental Study on Freezing and Thawing Resistance of Fly Ash Concrete (플라이애쉬 콘크리트의 동경융해저항성에 관한 연구)

  • 배성용
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.128-133
    • /
    • 2001
  • It is generally known that the concrete structure subjected to severe environment is much affected by the corrosion of reinforcement, the freezing and thawing action of concrete structure. The main objective of this study is to investigate the freezing and thawing resistance of concrete including fly ash. The effect of the air content in concrete using fly ash is investigated. The experimental study is conducted for 10 mix-ratio cases of concrete of which variables are content of fly ash, concrete compressive strength and containment of air-entrained admixtures. Test results show that the freezing and thawing resistance improves as the amounts of fly ash increase, and concrete with air-entrained admixtures has good freezing and thawing resistance. The concrete with fly ash is to be included air-entrained admixture according to content of fly ash in order to increase the freezing and thawing resistance.

  • PDF

A Study on the Deterioration Prediction Method of Concrete Structures Subjected to Cyclic Freezing and Thawing (동결융해 작용을 받는 콘크리트 구조물의 내구성능 저하 예측 방법에 관한 연구)

  • Koh, Kyung-Taeg;Kim, Do-Gyeum;Cho, Myung-Sung;Son, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.131-140
    • /
    • 2001
  • In general, the deterioration induced by the freezing and thawing cyclic in concrete structures often leads to the reduction in concrete durability by the cracking or surface spalling. If it can prediction of concrete deterioration subjected to cyclic freezing and thawing, we can rationally do the design of mix proportion in view of concrete durability and the maintenance management of concrete structures. Therefore in this study a prediction method of deterioration for concrete structures subjected to the irregular freezing and thawing is proposed from the results of accelerated laboratory freezing and thawing test using the constant temperature condition and the in-situ weathering data. Furthermore, to accurately predict the concrete deterioration, a method of modification for the effect of hydration increasing during rapid freezing and thawing test is investigated.

  • PDF

Strength characteristic transformation of weathered soil caused by freezing-thawing (동결 -융해에 따른 풍화토의 강도특성 변화)

  • 김수삼;박영목;정승용;김용수
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.520-525
    • /
    • 2001
  • It's strongly recommended to check upon the slope stability of soil nearby railroad, since the freezing-thawing repeat in long term may cause decrease of slope stability. The study is, therefore, focused on the strength characteristic transformation of soil, measuring it experimentally, throughout physical and mechanical tests operated by the freezing-thawing repeat tests. The sampling of weathered soil used for the embankment materials along the domestic railway lines are classified by parent-rock, and then collected after it in the first hand. It tells that Uniaxial strength and axial strain were decreased simultaneously as the frequency of freezing-thawing repeat increased and its range was reduced into 25~85 percentage off comparing to uniaxial strength of unfreezing-soils when about 100 times of freezing-thawing repeats occurred. Following the result of direct shear tests, the cohesion of freezing-soil with freezing-thawing repeats shows 11∼60 percentage less than that of unfreezing-soil but the change of internal friction angle of the soil is extremely slight, enough to ignore. As a result. it could be found that strength characteristic transformation has highly correlated with freezing-thawing repeat.

  • PDF

Freezing and Thawing Properties of High Strength Concrete Using Recycled Coarse Aggregate (재생굵은골재를 사용한 고강도 콘크리트의 동결융해 특성)

  • Sung , Chan-Yong;Im , Sang-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.59-66
    • /
    • 2004
  • This study was performed to evaluate the freezing and thawing properties of the high strength concrete using recycled coarse aggregate. The recycled coarse aggregate replaced natural crushed aggregate by 0%, 25%, 50%, 75% and 100%. The compressive strength of the concrete using recycled coarse aggregate showed more than 300 kgf/$cm^2$ at the curing age 28 days. The mass loss ratio by freezing and thawing was less than 1% at all mix type. The relative dynamic modulus of elasticity was decreased with increasing the freezing and thawing cycles. Also, the durability factor by the freezing and thawing was decreased with increasing the content of recycled coarse aggregate. But, the recycled concrete except 100% recycled coarse aggregate showed 60 or more durability factor in the freezing and thawing 300 cycles. Accordingly, these recycled coarse aggregate can be used for high strength concrete.

An Experimental Study on Freezing-Thawing Resistance of Concrete Using Ground Granulated Blast-Furnace Slag (고로슬래그 미분말을 사용한 콘크리트의 동결융해 저항성에 대한 실험적 연구)

  • 남용혁;최세규;김동신;김생빈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.148-153
    • /
    • 1996
  • Concrete with ground granulated blast-furnace slag can be affected by frost attack because the reaction of hydration is slow at the early age. In this study, therefore, the freezing and thawing test has been carried out to investigate the freezing and thawing resistance on concrete with ground granulated blast-furnace slag. The freezing and thawing test has been performed on concrete a blended cement, which was substituted by ground granulated blast-furnace slag with 4 kinds of ratio (non-admixture, 20%, 40% and 60%). And also tested on concrete added the AE agents to the concrete of same mix proportion to search the improvement effects about the resistance. As a result, the freezing and thawing resistance showed a tendency of reduction in proportion to the increase of the substitution ratio. For non-AE concrete, resistances of the freezing and thawing were very poor as the durability index indicated less than 5.8%. For AE concrte, resistance of the freezing and thawing were excellent as the durability index indicated more than 80.9%.

  • PDF

Effects of aging and freezing/thawing sequence on quality attributes of bovine Mm. gluteus medius and biceps femoris

  • Kim, Hyun-Wook;Kim, Yuan H. Brad
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.254-261
    • /
    • 2017
  • Objective: The effects of aging and freezing/thawing sequence on color, physicochemical, and enzymatic characteristics of two beef muscles (Mm. gluteus medius, GM and biceps femoris, BF) were evaluated. Methods: Beef muscles at 3 d postmortem were assigned to four different combinations of aging and freezing/thawing sequence as follows; aging at $2^{\circ}C$ for 3 wk (A3, never-frozen control), freezing at $-28^{\circ}C$ for 2 wk then thawing (F2, frozen/thawed-only), aging at $2^{\circ}C$ for 3 wk, freezing at $-28^{\circ}C$ for 2 wk then thawing (A3F2), and freezing at $-28^{\circ}C$ for 2 wk, thawing then further aging at $2^{\circ}C$ for 3 wk (F2A3). Results: No significant interactions between different aging/freezing/thawing treatments and muscle type on all measurements were found. Postmortem aging, regardless of aging/freezing/thawing sequence, had no impact on color stability of frozen/thawed beef muscles (p<0.05). F2A3 resulted in higher purge loss than F2 and A3F2 treatments (p<0.05). A3F2 and F2A3 treatments resulted in lower shear force of beef muscles compared to F2 (p<0.05). Although there was no significant difference in glutathione peroxidase (GSH-Px) activity, F2A3 had the highest ${\beta}-N-acetyl$ glucominidase (BNAG) activity in purge, but the lowest BNAG activity in muscle (p<0.05). GM muscle exhibited higher total color changes and purge loss, and lower GSH-Px activity than BF muscle. Conclusion: The results from this present study indicate that different combinations of aging/freezing/thawing sequence would result in considerable impacts on meat quality attributes, particularly thaw/purge loss and tenderness. Developing a novel freezing strategy combined with postmortem aging will be beneficial for the food/meat industry to maximize its positive impacts on tenderness, while minimizing thaw/purge loss of frozen/thawed meat.

Effects of freezing and thawing on retaining wall with changes in groundwater level

  • Kim, Garam;Kim, Incheol;Yun, Tae Sup;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.531-543
    • /
    • 2021
  • Freezing and thawing of pore water within backfill can affect the stability of retaining wall as the phase change of pore water causes changes in the mechanical characteristics of backfill material. In this study, the effects of freezing and thawing on the mechanical performance of retaining wall with granular backfill were investigated for various temperature and groundwater level (GWL) conditions. The thermal and mechanical finite element analyses were performed by assigning the coefficient of lateral earth pressure according to phase change of soil for at-rest, active and passive stress states. For the at-rest condition, the mobilized lateral stress and overturning moment changed markedly during freezing and thawing. Active-state displacements for the thawed condition were larger than for the unfrozen condition whereas the effect of freezing and thawing was small for the passive condition. GWL affected significantly the lateral force and overturning moment (Mo) acting on the wall during freezing and thawing, indicating that the reduction of safety margin and wall collapse due to freezing and thawing can occur in sudden, unexpected patterns. The beneficial effect of an insulation layer between the retaining wall and the backfill in reducing the heat conduction from the wall face was also investigated and presented.

Effect of Novel Quick Freezing Techniques Combined with Different Thawing Processes on Beef Quality

  • Jo, Yeon-Ji;Jang, Min-Young;Jung, You-Kyoung;Kim, Jae-Hyeong;Sim, Jun-Bo;Chun, Ji-Yeon;Yoo, Seon-Mi;Han, Gui-Jung;Min, Sang-Gi
    • Food Science of Animal Resources
    • /
    • v.34 no.6
    • /
    • pp.777-783
    • /
    • 2014
  • This study investigated the effect of various freezing and thawing techniques on the quality of beef. Meat samples were frozen using natural convection freezing (NF), individual quick freezing (IQF), or cryogenic freezing (CF) techniques, followed by natural convection thawing (NCT) or running water thawing (RT). The meat was frozen until the core temperature reached $-12^{\circ}C$ and then stored at $-24^{\circ}C$, followed by thawing until the temperature reached $5^{\circ}C$. Quality parameters, such as the pH, water binding properties, CIE color, shear force, and microstructure of the beef were elucidated. Although the freezing and thawing combinations did not cause remarkable changes in the quality parameters, rapid freezing, in the order of CF, IQF, and NF, was found to minimize the quality deterioration. In the case of thawing methods, NCT was better than RT and the meat quality was influence on the thawing temperature rather than the thawing rate. Although the microstructure of the frozen beef exhibited an excessive loss of integrity after the freezing and thawing, it did not cause any remarkable change in the beef quality. Taken together, these results demonstrate that CF and NCT form the best combination for beef processing; however, IQF and NCT may have practical applications in the frozen food industry.

Muscle Intoxication of 'Gukmeri-bok' Puffer (Takifugu vermicularis radiatus) by Freezing and Thawing (냉동과 해동에 따른 국매리복 근육의 독화)

  • JEON Joon-Kyun;HONG Kyung-Pyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.3
    • /
    • pp.175-178
    • /
    • 2004
  • We here report that the muscle of 'gukmeri-bok' puffer fish (Takifugu vermicularis radiatus) is intoxicated after freezing and thawing processes even though it is not toxic when it is fresh. This study was carried out to investigate the effect of different freezing and thawing conditions as well as the effect of the presence of skin or viscera on the intoxication of muscle of 'gukmeri-bok' puffer during freezing and thawing process. As a result of this investigation, thawing condition, but not freezing conditions or periods played an important role in muscle intoxication. Tetrodotoxin secretory grands exist in the skin of toxic puffer fish, the skin was more responsible for the muscles intoxication than the viscera during the freezing-thawing process. In other words, no toxicity was measured in the muscle of skinned-frozen specimens even when thawed. According to this result, it is recommended that the skin and viscera must be removed before being frozen for edible purpose. Otherwise, when a whole fish should be frozen, alternative half-thawing and removal of skin from frozen specimens is recommended.