• Title/Summary/Keyword: freeze-thaw cycles

Search Result 140, Processing Time 0.018 seconds

Performance of cement-stabilized sand subjected to freeze-thaw cycles

  • Jumassultan, Assel;Sagidullina, Nazerke;Kim, Jong;Ku, Taeseo;Moon, Sung-Woo
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.41-48
    • /
    • 2021
  • In cold regions, the integrity of the infrastructures built on weak soils can be extensively damaged by weathering actions due to the cyclic freezing and thawing. This damage can be mitigated by exploiting soil stabilization techniques. Generally, ordinary Portland cement (OPC) is the most commonly used binding material for investigating the chemo-hydromechanical behavior. However, due to the environmental issue of OPC producing a significant amount of carbon dioxide emission, calcium sulfoaluminate (CSA) cement can be used as one of the eco-sustainable alternatives. Although recently several studies have examined the strength development of CSA treated sand, no research has been concerned about CSA cement-stabilized sand affected by cyclic freeze and thaw. This study aims to conduct a comprehensive laboratory work to assess the effect of the cyclic freeze-thaw action on strength and durability of CSA cement-treated sand. For this purpose, unconfined compressive strength (UCS) and ultrasonic pulse velocity (UPV) tests were performed on the stabilized soil specimens cured for 7 and 14 days which are subjected to 0, 1, 3, 5, and 7 freeze-thaw cycles. The test results show that the strength and durability index of the samples decrease with the increase of the freeze-thaw cycles. The loss of the strength and durability considerably decreases for all soil samples subjected to the freeze-thaw cycles. Overall, the use of CSA as a stabilizer for sandy soils would be an eco-friendly option to achieve sufficient strength and durability against the freeze-thaw action in cold regions.

Effect of Freeze-Thaw Cycles after Cracking Damage on the Flexural Behavior of Reinforced Concrete Beams (균열손상 후 동결융해를 경험한 철근콘크리트 보의 휨거동)

  • Kim, Sun-Woo;Choi, Ki-Bong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.399-407
    • /
    • 2010
  • The flexural behaviors of two types of beam members exposed to freeze-thaw cycles were evaluated. This study aims to examine the effect of freeze-thaw cycles on the behavior characteristics of reinforced concrete (RC) beams. For the purpose, a part of the beam specimens were damaged until yielding of tension reinforcement was reached, before they were exposed to 150 and 300 cycles of freeze-thaw. Cyclic tests, as well as monotonic tests, were conducted to evaluate the stiffness degradation characteristics when same cycle is repeated. The material tests showed that relative dynamic modulus of concrete exposed to 300 cycles of freeze-thaw moderately decreased to 86.8% of normal concrete, indicating that concrete used in this study has good durability against freeze and thaw damage. The results of monotonic tests showed reduction of flexural strength, ductility and stiffness of the beam specimens exposed to freeze-thaw cycles compared with those of the control speciments. In particular, BDF13 specimens, which had been subjected to artificial cracking damage, did not showed enough flexural strength to satisfy nominal moment required by current concrete structure design code. In the monotonic tests results, BF75 specimens exposed to freeze-thaw cycles showed 10% or more cyclic stiffness degradation. Therefore, it was thought that deformation of concrete in compression have to be considered in design process of members under cyclic load, such as seismic device.

Effect of Multiple Freeze-Thaw Cycles on Myoglobin and Lipid Oxidations of Grass Carp (Ctenopharyngodon idella) Surimi with Different Pork Back Fat Content

  • Shang, Xiaolan;Yan, Xunyou;Li, Qiuling;Liu, Zizheng;Teng, Anguo
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.969-979
    • /
    • 2020
  • Fresh grass carp was used to produce surimi and 50 g/kg, 100 g/kg, or 150 g/kg pork back fat was added. The water distribution, thiobarbituric acid reactive substances (TBARS), myoglobin oxidation, color parameter (L*, a*, and b*), heme and non-heme iron content of samples were determined to analyze the effects of different fat content on the oxidation of myoglobin and lipids during multiple freeze-thaw cycles of grass carp surimi. Both multiple freeze-thaw cycles and increased fat content lead to an increase in TBARS, a blue shift in the absorption peak of myoglobin porphyrin, a decrease in heme iron content, and an increase of non-heme iron content. Repeated freeze-thaw caused a decrease in immobilised water content and L*, and caused an increase in a* and b*. Increased fat content caused an increase in immobilised water content, L* and a*, and caused a decrease in b*.

Probabilistic Prediction Model for the Cyclic Freeze-Thaw Deteriorations in Concrete Structures (콘크리트 구조물의 반복적 동결융해에 의한 확률론적 열화예측모델)

  • Cho, Tae-Jun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.957-960
    • /
    • 2006
  • In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the Response Surface Method (RSM) is used. RSM has merits when the other probabilistic simulation techniques can not guarantee the convergence of probability of occurrence or when the others can not differentiate the derivative terms of limit state functions, which are composed of random design variables in the model of complex system or the system having higher reliability. For composing limit state function, the important parameters for cyclic freeze-thaw-deterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used as input parameters of RSM. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw for specimens show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages by the cyclic freeze-thaw by the use of proposed prediction method.

  • PDF

Experimental study on freezing point of saline soft clay after freeze-thaw cycling

  • Wang, Songhe;Wang, Qinze;Qi, Jilin;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.997-1004
    • /
    • 2018
  • The brine leakage is a tough problem in artificial freezing engineering. This paper takes the common soft clay in Wujiang District as the study object, and calcium chloride solutions with six salinity levels were considered. The 'classic' cooling curve method was employed to measure the freezing point of specimens after freeze-thaw. Results indicate that four characteristic stages can be observed including supercooling, abrupt transition, equilibrium and continual freezing, strongly dependent on the variation of unfrozen water content. Two characteristic points were found from the cooling curves, i.e., freezing point and initial crystallization temperature. A critical value for the former exists at which the increment lowers. The higher the saline content approximately linearly, lower the freezing point. In the initial five cycles, the freezing point increases and then stabilizes. Besides, the degree of supercooling was calculated and its correlations with water, salt and freeze-thaw cycles were noted. Finally, an empirical equation was proposed for the relationship of freezing point and three main factors, i.e., water content, saline content and freeze-thaw cycles. Comparison of calculated and measured data proves that it is reliable and may provide guidance for the design and numerical analysis in frozen soil engineering.

Effect of Multiple Freeze-Thaw Cycles on Lipid Degradation and Lipid Oxidation of Grass Carp Surimi Containing Different Amounts of Pork Back Fat

  • Shang, Xiaolan;Du, Juan;Zhao, Yuhan;Tian, Jiajia;Jiang, Shuhui
    • Food Science of Animal Resources
    • /
    • v.41 no.6
    • /
    • pp.923-935
    • /
    • 2021
  • Fresh grass carp was used to produce surimi samples that were supplemented with 50 g/kg, 100 g/kg, or 150 g/kg pork back fat. The lipid composition, lipase activity, lipid oxidation index, and lipoxygenase activity of samples subjected to repeated freezethaw process were determined to assess the effects of the added fat on lipolysis and lipid oxidation of grass carp surimi. Freeze-thaw treatment increased free fatty acid content, mainly due to the decomposition of phospholipids and some neutral lipids by lipase. With repeated freeze-thaw treatment, the levels of free fatty acids and phospholipids were correlated with the lipid oxidation indexes and lipoxygenase activity, indicating that lipid degradation can promote lipid oxidation. In the same freeze-thaw cycle, surimi products with high fat content are more vulnerable to oxidative damage, neutral lipids are the main source of free fatty acids in the early stage of freeze-thaw, and phospholipids are the main source of free fatty acids in the late stage.

Mechanism of shear strength deterioration of loess during freeze-thaw cycling

  • Xu, Jian;Wang, Zhangquan;Ren, Jianwei;Yuan, Jun
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.307-314
    • /
    • 2018
  • Strength of loess that experienced cyclic freeze and thaw is of great significance for evaluating stability of slopes and foundations in loess regions. This paper takes the frequently encountered loess in the Northwestern China as the study object and carried out three kinds of laboratory tests including freeze-thaw test, direct shear test and SEM test to investigate the strength behaviors of loess after cyclic freeze and thaw, and the correlation with meso-level changes in soil structure. Results show that for loess specimens at four dry densities, the cohesion decreases with freeze-thaw cycles until a residual value is reached and thus an exponential equation is proposed. Besides, little change in the angle of internal friction was observed as freeze-thaw proceeds. This may depend on the varying of soil structure, based on which a clue can be found from the surface morphology and mesoscopic scanning of loess specimens. Clearly we observed significant changes in surface morphology of loess and it tends to aggravate at higher water contents or more cycles of freeze and thaw. Moreover, freeze-thaw cycling leads to obvious changes in the meso-structure of loess including lowering the particle aggregates and increasing both the proportion of fine particles and porosity area ratio. A damage variable dependent on the ratio of porosity area is introduced based on the continuum damage mechanics and its correlation with cohesion is discussed.

Effects of Milk Proteins and Gums on Quality of Bread Made from Frozen Dough following Freeze-Thaw Cycles

  • Yun, Young;Eun, Jong-Bang
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.805-813
    • /
    • 2006
  • The quality of frozen bread dough made with the milk proteins casein (C), whey (W), and the gums sodium alginate (A) and ${\kappa}$-carrageenan (K), was investigated to develop methods to suppress the deterioration of the frozen dough quality. The control had a lower dough volume than dough with additives during freeze-thaw cycles. In bread stored at $5^{\circ}C$, the moisture content of bread prepared with whey plus sodium alginate (WA) decreased less than that of the control. The control also had a lower specific loaf volume than breads made with added milk proteins and gums. The hardness of the control bread and bread made with casein plus sodium alginate (CA) and whey plus ${\kappa}$-carrageenan (WK) increased during freeze-thaw cycles, although that of the control increased more than the others. There was no significant difference in sensory preference among breads with and without milk proteins and gums. Addition of CA and WA improved the baking quality by reducing the deterioration of frozen dough and retarding the staling of bread.

Effect of porosity on frost resistance of Portland cement pervious concrete

  • Zhang, Wuman;Li, Honghe;Zhang, Yingchen
    • Advances in concrete construction
    • /
    • v.6 no.4
    • /
    • pp.363-373
    • /
    • 2018
  • Portland cement pervious concrete (PCPC) is an effective pavement material to solve or reduce the urban waterlogging problems. The Mechanical properties, the permeability, the abrasion resistance and the frost resistance of PCPC without fine aggregate were investigated. The increase of porosity was achieved by fixing the dosage of coarse aggregate and reducing the amount of cement paste. The results show that the compressive strength and the flexural strength of PCPC decrease with the increase of porosity. The permeability coefficient and the wear loss of PCPC increase with the increase of the porosity. The compressive strength and the flexural strength of PCPC subjected to 25 freeze-thaw cycles are reduced by 13.7%-17.8% and 10.6%-18.3%, respectively. For PCPC subjected to the same freeze-thaw cycles, the mass loss firstly increases and then decreases with the increase of the porosity. The relative dynamic modulus elasticity decreases with the increase of freeze-thaw cycles. And the lower the PCPC porosity is, the more obvious the dynamic modulus elasticity decreases.

Engineering Geological Characteristics of Freeze-Thaw Weathered Gneiss in the Wonju Area, Korea

  • Um, Jeong-Gi;Woo, Ik;Park, Hyuck Jin
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.161-169
    • /
    • 2014
  • We present the results of an experimental physical weathering study that focuses on fresh and slightly weathered gneiss samples from the Wonju area of Korea. The study investigated changes in the physico-mechanical properties of these samples during accelerated laboratory-based weathering, including analyses of microfracture formation. The deteriorated samples used in the study were subjected to 100-150 freeze-thaw cycles, with index properties and microfracture geometries measured between each cycle. Each complete freeze-thaw cycle lasted 24 hours, and consisted of 2 hours of saturation in a vacuum chamber, 8 hours of freezing at $-21^{\circ}C{\pm}1^{\circ}C$, and 14 hours of thawing at room temperature. Specific gravity and seismic velocity values were negatively correlated with the number of freeze-thaw cycles, whereas absorption values tended to increase. The amount of deterioration of the rock samples was dependent on the degree of weathering of the rock prior to the start of the analysis. Absorption, specific gravity, and seismic velocity values can be used to infer the amount of physical weathering experienced by a gneiss in the study area. The sizes and density of microfracture in the rock specimens varied with the number of freeze-thaw cycles. We found that box fractal dimensions can be used to quantify the formation and propagation of microfracture in the samples. In addition, these box fractal dimensions can be used as a weathering index for the mid-and long-term prediction of rock weathering. The present results indicate that accelerated-weathering analysis can provide a detailed overview of the weathering characteristics of deteriorated rocks.