• Title/Summary/Keyword: freeze sealing

Search Result 4, Processing Time 0.021 seconds

Evaluation of Crack Resistance of Cold Joint as Usage of Sealing Tape (실링 테이프 적용에 따른 시공조인트 균열 저항성 평가)

  • Lee, JaeJun;Lee, Seonhaeng;Kim, Du-Byung;Lee, Jinwook
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2018
  • PURPOSES : In order to evaluate a crack resistance at cold joint, sealing tape was adopted to apply at cold joint instead of typical tack coat material(RSC-4). The sealing tape was made by hot sealing material. The crack resistance as function of environmental and traffic loading was measured with visual observation. METHODS : In this study, the crack resistance was evaluated as function of environmental and traffic loading. The freeze-thaw method was adopted for environmental loading of asphalt pavement. condition. The damage of cold joint under freeze-thaw action is initiated by ice expansion load and accelerated by the interfacial damage between new and old asphalt pavement. The traffic loading was applied with wheel tracking machine on the cold joint area of the asphalt pavement for 3 hours at $25^{\circ}C$. The evaluation of crack resistance was measured with visual observation. The freeze-thaw results shows that the sealing tape was significantly increased the crack resistance based on. RESULTS : To estimate the crack resistance at cold joint area due to the environmental loading, the Freeze-thaw test was conducted by exposing the product to freezing temperature(approximately $-18^{\circ}C$) for 24 hours, and then allowing it to thaw at $60^{\circ}C$ for 24 hours. The tack coat material(RSC-4) was debonded after 21 cycles of the Freeze-thaw test. The first crack was observed after 14 freeze-thaw cycle with RSC-4 material. But, the sealing tape was not debonded after 24 cycle test. Also, the sealing tape shows the better performance of the crack resistance under the traffic loading with wheel track test. The crack was generated the under traffic loading with RSC-4(tack coating), however, the crack was not shown with sealing tape. It indicates that the sealing tape has a strong resistance of tensile stress due to traffic loading. CONCLUSIONS :Based on limited laboratory test result, a performance of crack resistance using the sealing tape is better than that of general tack coat material(RSC-4). It means that the sealing tape is possible to extend a pavement service life because the crack, one of the main pavement distresses, will be delayed.

Integrity Evaluation of Ice Plugged Pipes Applied on Short Jacket

  • Park, Yeong-Don;Son, Geum-Su
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.105-116
    • /
    • 2002
  • In special industrial fields such 3s nuclear power plants and chemical plants, it is often necessary to repair system components without plant shutdown or drainage of system having many piping structures which may have hazardous or expensive fluid. A temporary ice plugging method for blocking internal flow is considered as a useful method in that case. According to the pipe freezing guideline of the nuclear power plant, the length of a freezing jacket must be longer than twice of the pipe diameter. However, for applying the ice plugging to short pipes which do not have enough freezing length because of geometrical configuration, it is inevitable to use shorter jacket less than twice of the pipe diameter. In this study, the integrity evaluation for short pipes in the nuclear power plant Is conducted by an experiment and the finite element analysis. From the results, the ice plugging process in short pipes can be safely carried out without any plastic deformation and fracture.

An Experimental Study for the Liquid Freezing Phenomena in a Pipe During Ice Plugging (결빙 관막음시 배관내 유체 결빙현상의 실험적 연구)

  • Park, Yeong-Don;Jo, Hyeon-Cheol;Choe, Byeong-Ik;Kim, Gwi-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.366-372
    • /
    • 2001
  • The ice plugging process consists of placing liquid nitrogen around a pipe and removing heat until the water in the pipe freezes and provides a solid plug or seal against fluid movement. This technique enables us to repair or inspect a pipe system without shutdown of entire system. A set of test apparatus for investigation of the liquid freezing phenomena during ice plugging is prepared. This study shows the characteristics of the liquid freezing and the heat transfer with various pipe and freezing jacket conditions. And in case there is flow of the fluid inside the pipe, the flow rate which can be able to form the ice plug is identified with the effect of the pipe diameter and freezing jacket length on the plug formation. The permissible maximum flow rate for the complete plug formation is approximately proportional to the freezing jacket length at the same pipe diameter condition.

Application of Cold Weather Concreting with Accelerator for Freeze Protection to Full Scale Structures (내한촉진제를 사용한 한중콘크리트의 실구조물 적용에 관한 연구)

  • Kim, Young-Jin;Baek, Tae-Ryong;Lee, Sang-Soo;Won, Chul;Kim, Dong-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.254-262
    • /
    • 2003
  • In this study, the results of applying cold weather concreting mixed with Accelerator for Freeze Protection(AFP) to full scale structures are presented. Since the determination of W/C and amount of AFP significantly have an effect on strength gain and protection of frost damage in early, a full investigation is needed to determine these values at stage of nux design. The flowability of fresh cold weather concreting with AFP was similar to the same W/C. Lower loss of workability and initial slump flow of concrete using superplasticizer of polycarboxylic ester than that of melamine sulphonate showed that polycarboxylic ester was more effective on elapsed time. Temperature histories of specimens located in insulation boxes at the site was similar to that of structures. Thus, it is cleared that simple adiabatic curing method is effective for evaluating in-place concrete strength than specimens cured by sealing method. The investigation results of development of compressive strength of cold weather concreting included AFP with curing methods by logistic curves indicated that AFP can be effective to gain strength at lower temperature than normal curing temperature. In field testing, vinyl sheets were placed over the concrete sections and AFP enabled concrete to gain $5N/{mm}^2$ to protect frost damage in early ages and specified compressive strength of concrete at 28 days under average temperature of $-2^{\circ}C$ (lowest temperature was $-12^{\circ}C$) during site application.