• Title/Summary/Keyword: freezable water

Search Result 2, Processing Time 0.017 seconds

DSC Analysis on Water State of Salvia Hydrogels

  • Yudianti, Rike;Karina, Myrtha;Sakamoto, Masahiro;Azuma, Jun-Ichi
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1015-1020
    • /
    • 2009
  • The role of the water structure present in hydrogels from nutlets of three species of salvias, S. miltiorrhiza (SM), S. sclarea (SS) and S. viridis (SV), was analyzed by differential scanning calorimetry (DSC). The sharp endothermic peaks that appeared at $5.9^{\circ}C$ (SM), $2.8^{\circ}C$ DC (SS) and $1.8^{\circ}C$ (SV) in each 1.0% hydrogel of 10.4-15.8% were not affected by addition of 0.1 M urea and alkali-metal salts. The order-disorder portions in the network were slightly affected by the distribution of freezable and non-freezable water in the hydrogel networks. The SV hydrogel was further used to investigate the effects of additives (0.1-8.0 M urea and 0.1-5.0 M NaCl) on its melting behavior. At 0.5-4.0 M urea and 1.0-3.0 M NaCl, two endothermic peaks appeared, corresponding to unbound (high temperature) and bound (low temperature) water in the gel networks, and eventually merged into one endothermic peak at 5.0-8.0 M urea and 4.0-4.5 M NaCl. After this merger, the endothermic peak shifted to 3.7, 4.0 and $5.6^{\circ}C$ at 5.0, 6.0 and 8.0 M urea, respectively. In the case of NaCl, a combination of peaks that occurred at 4.0-4.5 M were accompanied by a shift to lower temperature (-14.4 and $15.3^{\circ}C$) and the endothermic peak finally disappeared at 5.0 M NaCl due to the strong binding of water in the gel networks.

The Effect of Ions on Thermal Behaviors of Water in Poly(acrylic acid)/Water Mixtures (폴리아크릴산/$H_2O$ 혼합물에서 $H_2O$ 열적 거동에 미치는 이온의 영향)

  • Guan, Lan;Xu, Hongyan;Huang, Dinghai
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.386-389
    • /
    • 2010
  • Thermal behaviors of water in the poly(acrylic acid) (PAA)/water mixtures with 0.1 M NaCl, HCl, and NaOH were investigated by DSC. It showed that adding ions in the mixtures affected the crystallization of water evidently. Compared with the PAA/water mixtures, the $T_m$ of freezable bound water in the mixtures with ions moved to lower values and varied with different cations and anions, due to the stabilization or destabilization of the hydrogen-bonding hydration between polymers and water molecules through ionic hydration. The content of non-freezable bound water in the non-crystalline phase of the PAA/water mixtures with ions was not constant, it increased with total water content gradually, owing to the more binding sites created by ions. The ions could change the distribution of different states of water in the polymer aqueous solutions evidently.