• Title/Summary/Keyword: freeform

Search Result 238, Processing Time 0.027 seconds

Intelligent 3D packing using a grouping algorithm for automotive container engineering

  • Joung, Youn-Kyoung;Noh, Sang Do
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.140-151
    • /
    • 2014
  • Storing, and the loading and unloading of materials at production sites in the manufacturing sector for mass production is a critical problem that affects various aspects: the layout of the factory, line-side space, logistics, workers' work paths and ease of work, automatic procurement of components, and transfer and supply. Traditionally, the nesting problem has been an issue to improve the efficiency of raw materials; further, research into mainly 2D optimization has progressed. Also, recently, research into the expanded usage of 3D models to implement packing optimization has been actively carried out. Nevertheless, packing algorithms using 3D models are not widely used in practice, due to the large decrease in efficiency, owing to the complexity and excessive computational time. In this paper, the problem of efficiently loading and unloading freeform 3D objects into a given container has been solved, by considering the 3D form, ease of loading and unloading, and packing density. For this reason, a Group Packing Approach for workers has been developed, by using analyzed truck packing work patterns and Group Technology, which is to enhance the efficiency of storage in the manufacturing sector. Also, an algorithm for 3D packing has been developed, and implemented in a commercial 3D CAD modeling system. The 3D packing method consists of a grouping algorithm, a sequencing algorithm, an orientating algorithm, and a loading algorithm. These algorithms concern the respective aspects: the packing order, orientation decisions of parts, collision checking among parts and processing, position decisions of parts, efficiency verification, and loading and unloading simulation. Storage optimization and examination of the ease of loading and unloading are possible, and various kinds of engineering analysis, such as work performance analysis, are facilitated through the intelligent 3D packing method developed in this paper, by using the results of the 3D model.

Analysis of Adaptation for The first-time Progressive Lenses Glasses Wearers (누진렌즈 안경 처음 착용자의 적응도 분석)

  • Shim, Jun-Beom;Shim, Hyun-Seog
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.2
    • /
    • pp.117-122
    • /
    • 2011
  • Purpose: This study analyzed the factors related to adaptation of people who wears progressive lenses glasses for the first time. Methods: 463 presbyopia (Aged 41~78) without any ocular diseases with the progressive lens glasses were prescribed from 2010 to 2011 at B clinic in the Gwangju city. Progressive lenses adaptation were analyzed according to gender, age, distance refractive state, presbyopic addition, progressive lens design, the old glasses, astigmatism type, and anisometropia etc. High, mid and low-adapted groups were categorized as the status of wearing progressive lenses glasses, re-wearing, occasionally wearing and failed to weraing, respectively. Results: Men showed significantly higher adaptation (p=0.02) than women. Presbyopic addition (p=0.05) and progressive lens design (p=0.02) were statistically significant. However, it was found that there was so statistical significance for the factors of age, distance refractive state, the old glasses, astigmatism type, and anisometropia. Conclusions: According to the results of this study, when progressive lenses were prescribed, we should consider for adaptation gender, presbyopic addition, and progressive lens design etc.

A study on the core technologies for industrial type digital 3D SFF system

  • Kim, Dong-Soo;An, Young-Jin;Kim, Sung-Jon;Choi, Byung-Oh;Lim, Hyun-Eui
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2170-2174
    • /
    • 2005
  • Selective Laser Sintering (SLS) is a useful rapid prototyping technique for the manufacture of three dimensional (3D) solid objects directly from a scanning data. A new approach called a Selective Multi-Laser Sintering (SMLS) system has been developed at Korea Institute Machinery & Materials (KIMM) as an industrial type SFFS. This SMLS machine is built with a frame, heaters, nitrogen supply part, laser system. This system uses the dual laser and 3D scanner made in $Solutionix^{TM}$ to improve the precision and speed for large objects. The three-dimensional solid objects are made of polyamide powder. The investigation on each part of SMLS system is performed to determine the proper theirs design and the effect of experimental parameters on making the 3D objects. The temperature of the system has a great influence on sintering the polymer. Because the stability of the powder temperature prevents the deformation of each layer, the controls of the temperature in both the system and the powders are very important during the process. Therefore, we simulated the temperature distribution of build room using the temperature analysis with ANSYS program. Selected radiant heater is used to raise temperature of powder to melting point temperature. The laser parameters such as scan spacing, scan speed, laser power and laser delay time affect the production the 3D objects too. The combination of the slow scan speed and the high laser power shows the good results without the layer curling. The work is under way to evaluate the effect of experimental parameters on process and to produce the various objects. We are going to experiment continuously to improve the size accuracy and surface roughness.

  • PDF

Automatic FE Mesh Generation Technique using Computer Aided Geometric Design for Free-form Discrete Spatial Structure (CAGD를 이용한 프리폼 이산화 공간구조물의 유한요소망 자동생성기법)

  • Lee, Sang-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.77-86
    • /
    • 2010
  • This paper provides background theories and numerical results of automatic finite element (FE) mesh generation for freeform discrete structures. The present method adopts the computer aided geometric design (CAGD) technique to overcome the limitation of case-sensitive traditional automatic FE mesh generator. The present technique involves two steps. The first one is to represent the shape of the structure using the geometric model based on the CAGD and the second one is to generate the discrete FE mesh of spatial structures over the geometric model. From numerical results, it is found to be that the present technique is very easy to produce the FE mesh for free-form spatial structures and it can also reuse some features of traditional automatic mesh generator in the process. Furthermore, it shows the possibility to be used for the shape optimization of large spatial structures.

  • PDF

Fabrication and Evaluation of Hybrid Scaffold by Nano-Micro Precision Deposition System (나노-마이크로 정밀 분사 시스템을 이용한 하이브리드 인공지지체의 제작 및 평가)

  • Ha, Seong-Woo;Kim, Jong Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.875-880
    • /
    • 2014
  • Recently, three-dimensional scaffolds and nanofibers are being developed for bone tissue regeneration. In this study, we fabricated a hybrid scaffold using a nano-micro precision deposition system. The fabrication process involved the application of the solid freeform fabrication (SFF) technology and electrospinning. The hybrid scaffolds were combined using micro scaffolds and nanofibers. The nanofibers were deposited on each layer of the micro scaffolding using the electrospinning process. The micro scaffolds were fabricated using the SFF technology at a temperature of $100^{\circ}C$, pressure of 650 kPa, and scan velocity of 250 mm/s. Nanofiber fabrication was conducted by means of electrospinning using the flow rate, solution concentration, distance from the tip to the collector (TCD), and voltage. The nanofibers were fabricated using a flow rate of 0.1 ml/min, voltage of 5 kV, TCD of 1 mm, and 10 wt% of solution concentration. MG-63 cells were seeded into the hybrid scaffold for the purpose of its evaluation.

Analysis of the Spatial Structure of Zaha Hadid's Museum using Space Syntax (공간구문론을 이용한 자하 하디드 뮤지엄 건축의 공간구조 분석)

  • Kook, Jin-Sun;Cho, Ja-Yeon
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.5
    • /
    • pp.311-319
    • /
    • 2013
  • Buildings of the de-constructive tendency beyond definite forms are being constructed in countries with economic power, technical skills and open culture because they require social conditions to accommodate those buildings as well as a lot of construction expenses. Frank Gehry and Zaha Hadid can be chosen as the representative architects of de-constructivism series who are currently working hard. Though both of them are architects belonging to the de-constructivism category, their works show different construction due to the differences in architectural philosophy and working ways. Gehry consider Architect as a fine art and enjoy (sculpture) three-dimensional structure work through Rough Model. With increasing demand for landmark atypical buildings, Hadid has been frequently awarded in the recent series of International Competitions and deals with a lot of cultural works. Affected by absolutism, Hadid showed various diagonal lines in her early construction and works based on the theme of dynamics such as lightness, gliding and light contact with the ground etc. Hadid's Architecture which worked under the theme of dynamic contains a variety of diagonal lines that might cause the viewers to have difficulty on spatial awareness, thus It is known that Hadid's Architecture has lower efficiency on the Circulation and difficulty on spatial cognition compared to the typical museum. According to the research findings of the previous paper that space understanding of viewers on Frank Gehry Museum consisting of complicated planes is generally better than that of them on a typical museum, the purpose of this study is to find out the Circulation efficiency and spatial cognition of Hadid Museum by explaining the space structure of dynamic Hadid Museum and the difference compared to typical museum.

Fundamental Process Development for Bio-degradable Polymer Deposition and Fabrication of Post Surgical Anti-adhesion Barrier Using the Process (생분해성 고분자 용착을 위한 기반 공정 개발과 이를 이용한 수술 후 유착 방지막의 제작)

  • Park, Suk-Hee;Kim, Hyo-Chan;Kim, Taek-Gyoung;Jung, Hyun-Jeong;Park, Tae-Gwan;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.138-146
    • /
    • 2007
  • Some biodegradable polymers and other materials such as hydrogels have shown the promising potential for surgical applications. Post surgical adhesion caused by the natural consequence of surgical wound healing results in repeated surgery and harmful effects. Recently, scientists have developed absorbable anti-adhesion barriers that can protect a tissue from adhesion in case they are in use; however, they are dissolved when no longer needed. Although these approaches have been attempted to fulfill the criteria for adhesion prevention, none can perfectly prevent adhesions in all situations. Overall, we developed a new method to fabricate an anti-adhesion membrane using biodegradable polymer and hydrogel. It employed a highly accurate three-dimensional positioning system with pressure-controlled syringe to deposit biopolymer solution. The pressure-activated microsyringe was equipped with fine-bore nozzles of various inner-diameters. This process allowed that inner and outer shapes could be controlled arbitrarily when it was applied to a surgical region with arbitrary shapes. In order to fulfill the properties of the ideal barriers f3r preventing postoperative adhesion, we adopted the pre-mentioned method combined with surface modification with the hydrogel coating by which anti-adhesion property was improved.

Development of 3D Modeling Technology of Human Vacancy for Bio-CAD (Bio-CAD를 위한 인체공동부의 3차원 모델링 기술 개발)

  • Kim, Ho-Chan;Bae, Yong-Hwan;Kwon, Ki-Su;Seo, Tae-Won;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.12
    • /
    • pp.138-145
    • /
    • 2009
  • Custom medical treatment is being widely adapted to lots of medical applications. A technology for 3D modeling is strongly required to fabricate medical implants for individual patient. Needs on true 3D CAD data of a patient is strongly required for tissue engineering and human body simulations. Medical imaging devices show human inner section and 3D volume rendering images of human organs. CT or MRI is one of the popular imaging devices for that use. However, those image data is not sufficient to use for medical fabrication or simulation. This paper mainly deals how to generate 3D geometry data from those medical images. A new image processing technology is introduced to reconstruct 3D geometry of a human body vacancy from the medical images. Then a surface geometry data is reconstructed by using Marching cube algorithm. Resulting CAD data is a custom 3D geometry data of human vacancy. This paper introduces a novel 3D reconstruction process and shows some typical examples with implemented software.

A Study on the Convergence Relativity of the Combining Curved Forms of Tall Buildings (초고층빌딩의 비정형 곡면형태 조합 및 복합관계에 관한 연구)

  • Park, Sang-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.190-199
    • /
    • 2020
  • Globally, more super-tall buildings tend to be constructed competitively in the social and economic foundations. In the circumstance, this study is aimed at establishing a paradigm of super-tall buildings in terms of their various forms. Symbolizing a city or state, super-tall buildings not only are used as resources of tourism, but play an important role as a characteristic landmark. Therefore, it is necessary to find a curved form for a futuristic perspective. The purpose of this study is to infer the convergence relativity of curved forms among complex and diverse unstructured construction forms. This study used as subjects 50 super-tall buildings among the ranking data selected Council on Tall Buildings and Urban Habitat (CTBUH) in order for the basis of constructability related to actual design, rather than the way of recognizing a formative type, in the classification of curved forms into regularized surfaces, developable surfaces, and double-curved surfaces. The results of this study are presented as follows. This classification can be used as a fundamental material which is reasonably involved in the design process pursuing diverse curved surfaces in terms of design of tall buildings.

Handwriting and Voice Input using Transparent Input Overlay (투명한 입력오버레이를 이용한 필기 및 음성 입력)

  • Kim, Dae-Hyun;Kim, Myoung-Jun;Lee, Zin-O
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.4
    • /
    • pp.245-254
    • /
    • 2008
  • This paper proposes a unified multi-modal input framework to interface the recognition engines such as IBM ViaVoice and Microsoft handwriting-recognition system with general window applications, particularly, for pen-input displays. As soon as user pushes a hardware button attached to the pin-input display with one hand, the current window of focus such as a internet search window and a word processor is overlaid with a transparent window covering the whole desktop; upon which user inputs handwriting with the other hand, without losing the focus of attention on working context. As well as freeform handwriting on this transparent input overlay as a sketch pad, the user can dictate some words and draw diagrams to communicate with the system.