• Title/Summary/Keyword: free-form building(Irregular building)

Search Result 7, Processing Time 0.027 seconds

Decision Factors on Free-form Concrete Panel Sizes Produced by CNC Machines (CNC machine에 의해 생산 가능한 FCP 크기의 결정요인)

  • Lim, Jeeyoung;Lee, Donghoon;Moon, Yu-Mi;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.204-205
    • /
    • 2015
  • Demands for free-form buildings are on the rise, but such building designs require most cost and longer construction schedule, with less constructability due to challenges in construction member production and installation. FCP production technology has been developed using CNC machine in a bid to resolve the difficulties of member production. Exterior finishing panels of free-form building design must be divided in size and shape that can be produced by CNC machine. To solve this problem, constraints of CNC machine and correlations between CNC machine and panel need to be reviewed. Thus, the purpose of this study is to analyze decision factors on free-form concrete panel sizes produced by CNC machines. Through this study, FCP size can be optimized, which in turn can lead to improved FCP productivity and aesthetical quality of free-form building designs determined by the pattern of exterior finishing panels. CNC machine-enabled free-form concrete panel production technology will apply on site in the future, which will not only maximize the economic benefits of the technology but also support shorter construction schedule and better constructability.

  • PDF

Specialty Contractor's Role and Performance Analysis for Digital Fabrication - Focusing on the case of irregular podium construction - (디지털 패브리케이션 전문 건설업체 역할 및 성과 분석 - 비정형 포디움 시공 사례를 중심으로 -)

  • Ham, Nam-Hyuk;Ahn, Byung-Ju;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.8 no.1
    • /
    • pp.43-55
    • /
    • 2018
  • Recently, there have been increasing studies on the application of digital technology, which has its focus of the irregular building. However, most of these studies have not clarified the objective of the technology and the effectiveness of professional manpower on its performance. This study analyzes actual used technology and the role of specialty contractor. It presents a framework to quantify the performance of the specialty contractor. For these purposes, this paper presents a proposed method to evaluate the activities of specialty contractors using a queueing model. As an attempt to verify the model, an actual irregular building project, in which digital fabrication is applied, is investigated during the construction phase. In order to collect the digital fabrication data, digital fabrication reports and specialty contractor's work log of project are reviewed. In addition, Digital Fabrication input personnel, productivity data are collected through interviews with experts involving in the case project. Analysis of specialty contractor's performance in digital fabrication reveals that the wait status of project participants varies probabilistically depending on the digital technology application level. The results of this study are expected to contribute toward the improvement of the production level in the construction industry.

A Study on the Optimization of the Free-Form Buildings Façade Panels (비정형 건축물 외장패널의 최적화에 관한 연구)

  • Lim, Jang-Sik;Ock, Jong-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.2
    • /
    • pp.91-102
    • /
    • 2014
  • The outer surface of an irregular structure contains panels with two-directional curvature called NURBS. To construct these forms of exterior materials, complex geometric surface should be divided into forms and sizes that can be manufactured and constructed. Because the bigger the curvatures of these divided exterior panel, the more expensive the construction costs, these complex two-directional curvatures should go through optimal process of reinterpretation to minimize the curved surfaces with complex two-directional curvatures. Yet, to gain higher ground in technological competition in the field of irregular structure construction, companies do not share know-how that they obtained. Accordingly, small construction and design companies have trouble calculating even rough estimate and cannot adjust expected construction cost based on comparison of design alternatives. Given this situation, this study conducted the research that can support decision-making in the design stage of the construction and provide basic material for optimal range to reduce manufacturing cost by the minimizing the distorted plane of the irregular structure.

Flexible Mold Production Process for Using the PCM (PCM을 활용한 가변형 몰드 제작 프로세스)

  • Kim, Taekoo;Lee, Donghoon;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.272-273
    • /
    • 2014
  • Existing the free-form concrete segments (FCS) mold is produced by state of solid such as steel, wood, Styrofoam that can not be recycled. Using FCS mold result in delay on schedule and decrease of productivity because it consists of irregular curved variety and it requires more time than fixed mold. Thus, FCS mold should be developed which can reduce the costs and also it can be used as semipermanent. The aim of this study is to suggest of flexible mold production process for using the phase change materials(PCM). PCM is maintain that its solid state at low temperature but it changes phase to liquid state by heating. PCM is suitable material for flexible mold due to change of phase in relatively high temperature compare to other phase change materials such as water. Flexible mold is possible that reuse semi-permanently made by PCM. Thus, this study is proposed the process of flexible mold production for using the PCM. The study results will be used as the basic theory for studies on production and installation of FCS.

  • PDF

Analysis of Form and Space Changes in Design Process of Free-form Architecture of Culture-Related Facilities in South Korea

  • Ha, Jihee;Jung, Sungwon;Baek, Hyemi;Lee, Hyunjee;Nguyen, Khoa Tan
    • Architectural research
    • /
    • v.16 no.4
    • /
    • pp.157-166
    • /
    • 2014
  • This research investigates the design process of free-form architecture to understand the design strategy and changing factors during the development phase and the cause for them. It is aimed to foresee the changing factors from the design process and to reduce design changes. It analyzes the design changes of free-form architecture based on projects with finalized documentation or under construction in South Korea. Many free-form shapes of the free-form architectures have to be adjusted to rigid-form in order to satisfy function and be economical to build. The research finds three patterns in design changes. First, from the factors for design changes: function, constructability, design, program add/subtract, efficiency, circulation; Function and Constructability are the higher factors compared with the rest. The two are the design changes suitable for actual usage and cost savings. Second, each project has different predominant factors for design changes as the degree of free-form is different. Contrary to initial expectation, the greater the degrees of free-form of the competition scheme, the higher the rate of Function among the factors for design changes. Constructability is higher when the degree of the free-form is less than others. It means that the lower the degree of the free-form, the more properly planned the space of the building is. Last, Constructability of free-form architecture is considered during the earlier design phase than definite-form, one by which the design changes by comparing 'Before fixed Space Program' (BSP) and 'After fixed Space Program' (ASP) design changes. The research would be helpful as a reference for setting up competition guidelines to reduce trial and error during the design process.

Analysis of the Static Behavior of Tilted Structure with Dual-Core by Core Location (이중코어를 가진 경사진 형상 구조물의 코어 배치에 따른 역학적 거동 분석)

  • Kim, Min-Seok;Lee, Da-Hye;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.71-78
    • /
    • 2023
  • Recently, Free-Form and Irregular Shape high-rise buildings are constructed by IT technology development. Tilted shaped high-rise building which is one of Irregular shape high-rise buildings can cause lateral displacement by gravity load and lateral load due to tilted elevation shape. Therefore, it is necessary to review the behavior and structural aspects of the Tilted shape high-rise building by gravity load. In this paper, the dynamic characteristics of a tilted structure with a dual-core were analyzed with the core location as a design variable, and response behavior, vulnerable members, and vulnerable layers to earthquake loads were analyzed. As a result of the analysis, as the location of the core moved in an tilted direction, the eccentric distance and eccentric load decreased, reducing the axial force of the vertical members. However, the location of the core had little effect on the response.

Evaluation of Shape Deviation in Phase Change Material Molds Subjected to Hydration Heat During Ultra-High Performance Concrete Free-form Panel Fabrication (UHPC 비정형 패널 제작 시 수화열에 의한 PCM 거푸집의 형상오차 분석)

  • Kim, Hong-Yeon;Cha, Jae-Hyeok;Youn, Jong-Young;Kim, Sung-Jin;Lee, Donghoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.251-260
    • /
    • 2023
  • The construction of free-form structures with intricate curved exteriors necessitates the use of bespoke molds. To fulfill this requirement, a blend of Phase Change Material(PCM) and Ultra-High Performance Concrete(UHPC) is utilized. PCM endows the solution with recyclability, while UHPC facilitates the effortless execution of curvature in the mold fabrication process. However, it's worth mentioning that the melting point of PCM hovers around 58-64℃, and the heat emanating from UHPC's hydration process can potentially jeopardize the integrity of the PCM mold. Hence, experimental validation of the mold shape is a prerequisite. In the conducted experiment, UHPC was poured into two distinct mold types: one that incorporated a 3mm silicone sheet mounted on the fabricated PCM mold(Panel A), and the other devoid of the silicone sheet(Panel B). The experimental outcomes revealed that Panel A possessed a thickness of 3.793mm, while Panel B exhibited a thickness of 5.72mm. This suggests that the mold lacking the silicone sheet(Panel B) was more susceptible to the thermal effects of hydration. These investigations furnish invaluable fundamental data for the manufacturing of ultra-high strength irregular panels and PCM molds. They contribute substantially to the enrichment of comprehension and application of these materials within the realm of construction.