• Title/Summary/Keyword: free surface condition

Search Result 487, Processing Time 0.028 seconds

Evaluation on Shape Machining of Dies and Molds in High speed Machining using Ball-End Milling (볼 엔드밀을 이용한 고속가공에서 금형제품의 형성가공 특성파악)

  • 김경균;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.143-146
    • /
    • 1995
  • Due to the recent growth of die/mold machining industry, demands for the high-precision and the high0quality of die product are increasing rapidly. Free surfaces of die/mold are often manufactured using the ball-end milling process. It is difficult to find the cutting condition of the ball-end milling process due to the free form machining for the various tool paths on inclined surface.

  • PDF

A Numerical Method for a High-Speed Ship with a Transom Stern

  • Kyoung Jo-Hyun;Bai Kwang-June
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.8-17
    • /
    • 2004
  • A numerical method is developed for computing the free surface flows around a transom stern of a ship at a high Froude number. At high speed, the flow may be detached from the flat transom stern. In the limit of the high Froude number, the problem becomes a planning problem. In the present study, we make the finite-element computations for a transom stern flows around a wedge-shaped floating ship. The numerical method is based on the Hamilton's principle. The problem is formulated as an initial value problem with nonlinear free surface conditions. In the numerical procedures, the domain was discretized into a set of finite elements and the numerical quadrature was used for the functional equation. The time integrations of the nonlinear free surface condition are made iteratively at each time step. A set of large algebraic equations is solved by GMRES(Generalized Minimal RESidual, Saad and Schultz 1986) method which is proven very efficient. The computed results are compared with previous numerical results obtained by others.

Wave Generation with a Hydrofoil by More Efficient Free-Surface Boundary Condition (고효율 자유표면 경계조건에 의한 수중익 주위의 파도생성)

  • Kwag, S.H.
    • Journal of Korean Port Research
    • /
    • v.12 no.1
    • /
    • pp.87-93
    • /
    • 1998
  • For the calculation of the free-surface elevation, a new finite difference scheme is studied where the third derivative term for the wave elevation is artificially added in the Eulerian expression of the free-surface boundary condition. The paper presents a comparative analysis with simulations performed by the classical MAC method. More schematic computations are carried out by changing the submergence-depth and angle-of-attack. The present study shows that this new method is very efficient for the simulation of free-surface elevation around the trailing edge.

  • PDF

A study on the development of solution for the Crack Free Hard Chromium Deposits (Crack free 경질 크롬 도금욕 개발에 관한 연구)

  • 추현식;이홍로
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.4
    • /
    • pp.181-186
    • /
    • 1992
  • To investigate how to produce the crack free and chromium deposits, bath compositions, additives, electrolysis conditions and other electroplating parameters, such as cathodic current efficiency, surface hard-ness, crack density and corrosion rate of deposits were examined carefully. The crack free chrome deposits were well obtained using both wetting agents and two kind of additives. At 60 A/d$\m^2$, $60^{\circ}C$ electrolysis condition, crack free bright hard chromium deposits were well obtained to a thickness $300\mu\textrm{m}$ in Additive-I and Additive-II added solution.

  • PDF

The deformation of a free surface due to the impact of a water droplet

  • Kwon, Sun-Hong;Park, Chang-Woo;Lee, Seung-Hun;Shin, Jae-Young;Choi, Young-Myung;Chung, Jang-Young;Isshiki, Hiroshi
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.28-31
    • /
    • 2011
  • An attempt was made to compute the free surface deformation due to the impact of a water droplet. The Cauchy Poisson, i.e. the initial value problem, was solved with the kinematic and dynamic free surface boundary conditions linearized. The zero order Hankel transformation and Laplace transform were applied to the related equations. The initial condition for the free surface profile was derived from a captured video image. The effect of the surface tension was not significant with the water mass used in this investigation. The computed and observed free surface deformations were compared.

Simulation of Turbulent Flow and Surface Wave Fields around Series 60 $C_B$=0.6 Ship Model

  • Kim, Hyoung-Tae;Kim, Jung-Joong
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.1
    • /
    • pp.38-54
    • /
    • 2001
  • A finite difference method for calculating turbulent flow and surface wave fields around a ship model is evaluated through the comparison with the experimental data of a Series 60 $C_B$=0.6 ship model. The method solves the Reynolds-averaged Navior-Stokes Equations using the non-staggered grid system, the four-stage Runge-Kutta scheme for the temporal integration of governing equations and the Bladwin-Lomax model for the turbulence closure. The free surface waves are captured by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and free-surface conforming grids are generated at each time step so that one of the grid surfaces coincides always with the free surface. The computational results show an overall close agreement with the experimental data and verify that the present method can simulate well the turbulent boundary layers and wakes as well as the free-surface waves.

  • PDF

Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석)

  • Jung-Joong Kim;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The computations of the turbulent flow around the ship models with the free-surface effects were carried out. Incompressible Reynolds-Averaged Navier-Stokes equations were solved by using an explicit finite-difference method with the nonstaggered grid system. The method employed second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration. For the turbulence closure, a modified Baldwin-Lomax model was exploited. The location of the free surface was determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and a free-surface conforming grid was generated at each time step so that one of the grid boundary surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition was applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method developed in the present study, the computations were carried out for beth Wigley and Series 60 $C_B=0.6$ ship model and the computational results showed good agreements with the experimental data.

  • PDF

Analysis of Steady Flow Around a Two-Dimensional Body Under the Free Surface Using B-Spline Based Higher Order Panel Method (B-Spline 기저 고차경계요소법에 의한 자유수면하의 2차원 물체주위 유동해석)

  • Jae-Moon Lew;Yang-Ik Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.8-15
    • /
    • 2002
  • A two-dimensional higher order panel method using B-splines has been developed to overcome the disadvantages of the low order panel method and to obtain more accurate solution. The sources and the normal dipoles are distributed on both the body and the free surface. Instead of applying the upwind finite difference schemes to satisfy the linearized free surface and the radiation condition, the derivatives of the basis functions of the B-splines are directly applied to the linearized free surface condition. Numerical damping in the Dawson's method are avoided in the Present computations. In order to validate the present method, numerical computations are carried out for a submerged cylinder and a two-dimensional hydrofoil steadily moving beneath a free surface. The numerical results show that fast convergence and better accuracies have been achieved by the present method.

A Development of the Precision Machine with Vacuum Chuck and a Study on the Characteristics of Oxygen Free Couper (진공척 미세 가공기 개발 및 무산소동 절삭 특성 연구)

  • Kim, Geon-Hee;Kim, Youn-Joong;Kook, Myung-Ho;Lee, Sun-Kyu;Hong, Kweon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.28-33
    • /
    • 2007
  • This paper describes development of low cost precision machine that has a vacuum chuck. This study mainly aims to find out a cutting condition for maintaining optimum surface condition and to examine cutting characteristics of the precision machine that is equipped by diamond bites. The cutting materials is oxygen free copper. Several experiments were carried out to find out the main factors that affect the surface roughness such as principal axis RPM(rotation per minute), feeding speed, and cutting depth. As a result, we obtain The optimum cutting condition of the developed precision machine.

  • PDF

Direct imposition of the wall boundary condition for simulating free surface flows in SPH

  • Park, Hyung-Jun;Seo, Hyun-Duk;Lee, Phill-Seung
    • Structural Engineering and Mechanics
    • /
    • v.78 no.4
    • /
    • pp.497-518
    • /
    • 2021
  • In this study, a new method for treating the wall boundary in smoothed particle hydrodynamics (SPH) is proposed to simulate free surface flows effectively. Unlike conventional methods of wall boundary treatment through boundary particles, in the proposed method, the wall boundary condition is directly imposed by adding boundary truncation terms to the mass and momentum conservation equations. Thus, boundary particles are not used in boundary modeling. Doing so, the wall boundary condition is accurately imposed, boundary modeling is simplified, and computation is made efficient without losing stability in SPH. Performance of the proposed method is demonstrated through several numerical examples: dam break, dam break with a wedge, sloshing, inclined bed, cross-lever rotation, pulsating tank and sloshing with a flexible baffle. These results are compared with available experimental results, analytical solutions, and results obtained using the boundary particle method.