• Title/Summary/Keyword: franz cells

Search Result 48, Processing Time 0.032 seconds

InAs/GaAs 양자점 태양전지에서 AlGaAs Potential Barrier 두께에 따른 Photoreflectance 특성 및 내부 전기장 변화

  • Son, Chang-Won;Ha, Jae-Du;Han, Im-Sik;Kim, Jong-Su;Lee, Sang-Jo;Smith, Ryan;Kim, Yeong-Ho;Kim, Seong-Jun;Lee, Sang-Jun;No, Sam-Gyu;Park, Dong-U;Kim, Jin-Su;Im, Jae-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.306-307
    • /
    • 2011
  • Franz Keldysh Oscillation (FKO)은 p-n 접합 구조의 공핍층(depletion zone)에서 전기장(electric field)에 의해 발생되며, Photoreflectance (PR) spectroscopy를 통하여 관측된다. InAs/GaAs 양자점 태양전지(Quantum Dot Solar Cells, QDSCs)에서 PR 신호에 대한 Fast Fourier Transform (FFT)을 통하여 FKO 주파수들을 관측할 수 있고, 각각의 FKO 주파수들은 태양전지 구조에 대응하는 표면 및 내부전기장(internal electric field) 들로 분류할 수 있다. InAs/GaAs 양자점 태양전지에서 AlGaAs potential barrier의 두께에 따른 내부전기장의 변화를 조사하기 위해, GaAs-matrix에 8주기의 InAs 양자점 층이 삽입된 태양전지를 molecular beam epitaxy (MBE) 방법으로 성장하였다. 양자점의 크기는 2.0 monolayer (ML)이며, 각 양자점 층은 1.6 nm에서 6.0 nm의 AlGaAs potential barrier들로 분리되어 있다. 또한 양자점 층의 위치에 따라 내부전기장 변화를 조사하기 위해, p-i-n 구조에서 양자점 층이 공핍층 내에 위치한 경우와 p+-n-n+ 구조에서 양자점 층이 공핍 층으로부터 멀리 떨어진 n-base 영역에 삽입하여 실험결과를 비교분석하였다. PR 실험결과로부터, p-i-n 구조에서 InAs 양자점 태양전지의 내부전기장 변화는 potential barrier 두께에 따라 다소 복잡한 변화를 보였으며, 이는 양자점 층이 공핍층 내에 위치함으로써 격자 불일치(lattice mismatch)로 발생된 응력(strain)의 영향으로 설명할 수 있다. 이러한 결과들을 각각의 태양전지 구조에서 표면 및 내부전기장에 대해 계산된 값들에 근거하여, p+-n-n+ 구조에서 양자점 층이 공핍 층으로부터 멀리 떨어진 영역에 삽입된 경우의 결과와 비교해 보면 내부전기장의 변화는 더욱 분명해진다. 즉, 양자점 층의 potential barrier의 두께를 조절하거나, 양자점 층의 위치를 변화시킴으로써 양자점 태양전지의 내부전기장을 조작할 수 있으며, 이는 PR 실험을 통해 FKO를 관측함으로써 확인할 수 있다.

  • PDF

Evaluation of Dermal Absorption Rate of Pesticide Chlorpyrifos Using In Vitro Rat Dermal Tissue Model and Its Health Risk Assessment

  • Kim, Su-Heyun;Jang, Jae-Bum;Park, Kyung-Hun;Paik, Min-Kyoung;Jeong, Sang-Hee
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.140-149
    • /
    • 2016
  • All pesticides must be assessed strictly whether safe or not when agricultural operators are exposed to the pesticides in farmland. A pesticide is commonly regarded as safe when estimated dermal absorption amount is lower than the acceptable operator's exposure level (AOEL). In this study, dermal absorption rate of chlorpyrifos, a widely used organophosphate insecticide, was investigated using rat dermal tissue model. Chlorpyrifos wettable powder solved in water (250, 500 and 2,500 ppm) was applied to freshly excised rat dermal slices ($341{\sim}413{\mu}m$ thickness) on static Franz diffusion cells at $32^{\circ}C$ for 6 hours. After exposure period of 6 hours, and then washing-at residual amount of chlorpyrifos was analyzed in dermal tissues, tape strips, washing solution, washing swabs of receptor bottles and receptor fluids at 1, 2, 4, 8 and 24 hours. Chlorpyrifos was only detected in dermal tissue but not found in receptor fluid at each concentration and time point, and the absorption rate of 250, 500 and 2,500 ppm was 2.36%, 1.96% and 1.69%, respectively. The estimated exposure level of chlorpyrifos was calculated as 0.012 mg/kg bw/day. The health risk for farmers in this condition is a level of concern because the estimated exposure level is 12 times higher than AOEL 0.001 mg/kg bw/day. However, actual health risk will be alleviated than estimated because absorbed chlorpyrifos is not permeated into internal body system and only retained in skin layer.

HISTOPATHOLOGY AND PERCUTANEOUS ABSORPTION OF TOPICAL FORMULATION CONTAINING NEW CAPSAICIN ANALOG.

  • Kim, Chong-Hyuk;Lee, Beom-Jin;Cha, Bong-Jin;Kim, Soon-Hoe;Kim, Won-Bae
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.115-115
    • /
    • 1997
  • A new capsaicin analog modified with 4-hydroxyl and alkyl chain of capsaicin was a very potent antiinflammatory analgesic drug and may be clinically useful for those who have rheumatoid arthritis, diabetic neuropathy and cancer. The purpose of this study was to investigate histopathology after short and long term application of poloxamer-based gels, and percutaneous absorption of various topical formulations. Poloxamer-based gel was prepared by cold method using poloxamer 407. The poloxamer gels was applied to dorsal sites of hairless mouse skin during one week or one month for the evaluation of skin irritation. The applied site was then sectioned for histopathologic examination. The topical formulations were also prepared using CMC, HPMC, MC, carbopol and glycerylmono stearate. Skin variation of poloxamer gels was studied using excised hairless mouse, rat, hamster and human penis skin. Franz-type diffusion cells were used far skin penetration of drug against receptor phase filled with about 10$m\ell$ of 0.9% saline solution kept at 32$^{\circ}C$. The concentration of drug was determined by the reverse phased C18, Symmetry HPLC with fluorometeric detector. No skin erythema was observed after dorsal application of poloxamer-based gels for one week or one month. No histopathologic changes was also examined, suggesting no skin toxicity of poloxamer-based gels. The order of flux rate was HPMC > MC ( CMC > poloxamer >> glycerylmono stearate ( carbopol. There was a skin variation of poloxamer gels. The flux rate of poloxamer gels was highest in case of hairless mouse followed by rat, human and hamster skin. The Partial support-Ministry of Science and Engineering (HAN project).

  • PDF

Formulations of Itraconazole for Topical Skin Delivery (국소 피부 투여를 위한 이트라코나졸 제제의 조성)

  • Lee, Eun-A;Heo, Sung-Koun;Choi, Myeong-Jun;Chung, Suk-Jae;Shim, Chang-Koo;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.3
    • /
    • pp.167-171
    • /
    • 2007
  • Itraconazole is one of the most potent antifungal agents available in the market today. However, the low bioavailability due to its poor-water solubility calls for an alternative formulation to the current oral type. A topical itra-conazole-containing formulation may be of use for several reasons including the opportunity to reduce adverse events and generate high local tissue levels, more rapid drug delivery, and lower systemic exposure. The purpose of the present study was to investigate the vehicles for topical skin delivery of itraconazole. The effect of formulations on the hairless mouse skin permeation and deposition of itraconazole was determined using Franz diffusion cells at $37^{\circ}C$. Benzyl alcohol in micro-emulsion significantly increased the solubility of itraconazole, thereby increasing the skin permeation rate. However, lipo-some formulation showed the lowest solubility and permeation rate of itraconazole. Although the solubility of itraconazole in hydrogel formulation was lower than that in microemulsion, skin permeation rate was significantly higher probably due to its adhesive property. Therefore, microemulsion-based hydrogel formulation is expected to synergistically increase the skin permeation rate and skin deposition of itraconazole.

Transdermal Delivery of FITC-Ovalbumin with Microneedle System (마이크로 피부침을 이용한 FITC-OVA의 경피흡수)

  • Jang, Woo-Young;Lee, Chang-Rae;Seo, Seong-Mi;Lee, Bong;Kim, Moon-Suk;Khang, Gil-Son;Lee, Han-Gu;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.6
    • /
    • pp.403-409
    • /
    • 2005
  • For transdermal delivery of large molecular drugs such as vaccine and protein drugs, novel microneedle treatment device with roll was designed. The roll dimension is 1.43 cm diameter and 2.8 cm perimeter. Total number of microneedle on the roll is 3,360 with $230\;{\mu}m$ height and $740\;{\mu}m$ distance. The pore with $150\;{\mu}m$ depth and $35\;{\mu}m$ diameter on the skin was made by the designed microneedle device. This system could be achieved without pain. The permeation rates of FITC labelled ovalbumin (FITC-OVA, molecular weight: 45,000 g/mol) as a model protein were determined by modified Franz diffusion cells using skins of hairless mice or SD rats which were treated by using microneedle device two or four times. The average penetration fluxes of model protein increased from 674 to $872\;{\mu}g/cm^{2}{\cdot}hr$ as the number of treatment to make pore increased from two to four times. In conclusion, we confirmed the possibility of using the designed microneedle treatment device for transdermal delivery of the large molecular drugs.

Effects of Vehicles and Penetration Enhancers on the Percutaneous Absorption of Apomorphine (기제와 피부투과촉진제가 아포모르핀의 피부투과에 미치는 영향)

  • Choi, Young-Geun;Cui, Yu;Kim, Keun-Nam;Park, Eun-Seok;Chi, Sang-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.2
    • /
    • pp.129-133
    • /
    • 2003
  • In order to evaluate the effects of vehicles and penetration enhancers on skin permeation of apomorphine, the skin permeation rates of apomorphine from vehicles of different composition were determined using Franz diffusion cells fitted with excised rat skins. Solubility of apomorphine in various solvents was investigated to select a vehicle suitable for the percutaneous absorption of apomorphine. The solvents used were propylene glycol (PG), $Transcutol^{\circledR},\;Labrasol^{\circledR},\;Labrafac hydro WL^{\circledR},\;Labrafil WL 2609 BS^{\circledR}$ and isopropyl alcohol. Even though permeation rates of apomorphine from each vehicle were low $(0.008-0.36\;{\mu}g/cm^2/hr)$, the combination of PG and $Labrafac^{\circledR}$ increased it significantly. The permeation rates of apomorphine from $PG/Labrafac^{\circledR}$ mixtures increased as the volume fraction of PG in the mixture increased. The maximum permeation rate of $18\;{\mu}g/cm^2/hr$ was achieved at 30% of PG, which decreased with further increase of PG fraction. A series of fatty acids, alcohols and monoterpenes were employed as penetration enhancers. Incorporation of each enhancer in the $PG/Labrafac^{\circledR}$ (30:70) mixture at the level of 10% improved the skin permeation significantly. The highest permeation rate, $117\;{\mu}g/cm^2/hr$, was attained with myristic acid.

Drug Release and Skin Irritancy of Poloxamer Gel Containing Kojic Acid (코지산을 함유한 폴록사머 겔 제제의 약물방출 및 피부자극성)

  • Park, Eun-Woo;Cho, Seong-Wan;Kim, Dong-Sup;Choi, Ki-Hwan;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.3
    • /
    • pp.177-183
    • /
    • 1998
  • Low toxicity, reverse thermal gelation and high drug loading capabilities suggest that poloxamer 407 gels have great potential as a topical drug delivery system. Kojic acid (KA) is an antimelanogenic agent which has been widely used in cosmetics to whiten the skin color. However, it has the drawbacks of skin irritancy due to its acidic pH. Poloxamer gels of different polymer contents were formulated to overcome the problem and compared to the cream type formulations of either w/o/w multiple emulsion cream or o/w type emulsion cream. Using Franz diffusion cells mounted with a synthetic cellulose membrane (MWCO 12,000), drug release characteristics of the formulations were evaluated by the HPLC assay of KA concentration in the receptor compartment of pH 7.4 phosphate buffered saline solutions. Drug release from w/o/w multiple emulsion cream was controlled by oil membrane, showing the apparent zero order release kinetics. The KA release from the poloxamer gels was also controlled by the gel matrix, showing that drug release increased linearly as KA contents increase, but decreased exponentially as the polymer contents increase. In the skin irritancy test, the primary irritancy index(PII) of poloxamer gel base was lower than those of multiple emulsion cream base and o/w cream. Depending on KA contents or polymer contents in the gel. PH values in poloxamer gels were ranged from 1.3 to 2.0, which are interpreted as low or negligible irritation on skin. There was a good correlation between the log value of flux in drug release and PII value in skin irritation. It was possible to conclude that the poloxamer gels containing KA might be a good candidate for an antimelanogenic topical delivery system by virtue of the controlled release of the drug and the reduced skin irritancy.

  • PDF

Local tissue effects of various barrier membranes in a rat subcutaneous model

  • Naenni, Nadja;Lim, Hyun-Chang;Strauss, Franz-Josef;Jung, Ronald E.;Hammerle, Christoph H.F.;Thoma, Daniel S.
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.5
    • /
    • pp.327-339
    • /
    • 2020
  • Purpose: The purpose of this study was to examine the local tissue reactions associated with 3 different poly(lactic-co-glycolic acid) (PLGA) prototype membranes and to compare them to the reactions associated with commercially available resorbable membranes in rats. Methods: Seven different membranes-3 synthetic PLGA prototypes (T1, T2, and T3) and 4 commercially available membranes (a PLGA membrane, a poly[lactic acid] membrane, a native collagen membrane, and a cross-linked collagen membrane)-were randomly inserted into 6 unconnected subcutaneous pouches in the backs of 42 rats. The animals were sacrificed at 4, 13, and 26 weeks. Descriptive histologic and histomorphometric assessments were performed to evaluate membrane degradation, visibility, tissue integration, tissue ingrowth, neovascularization, encapsulation, and inflammation. Means and standard deviations were calculated. Results: The histological analysis revealed complete integration and tissue ingrowth of PLGA prototype T1 at 26 weeks. In contrast, the T2 and T3 prototypes displayed slight to moderate integration and tissue ingrowth regardless of time point. The degradation patterns of the 3 synthetic prototypes were similar at 4 and 13 weeks, but differed at 26 weeks. T1 showed marked degradation at 26 weeks, whereas T2 and T3 displayed moderate degradation. Inflammatory cells were present in all 3 prototype membranes at all time points, and these membranes did not meaningfully differ from commercially available membranes with regard to the extent of inflammatory cell infiltration. Conclusions: The 3 PLGA prototypes, particularly T1, induced favorable tissue integration, exhibited a similar degradation rate to native collagen membranes, and elicited a similar inflammatory response to commercially available non-cross-linked resorbable membranes. The intensity of inflammation associated with degradable dental membranes appears to relate to their degradation kinetics, irrespective of their material composition.

Development of Bioavailability Enhancement System for the Skin Permeation Promotion of Psolarea corylifolia Extract (보골지 추출물의 피부 투과 촉진 시스템 개발)

  • Cho, Young-Ho;Ahn, Ghe-Whan;Yang, Seung-Won;Cho, Kwan-Hyun;Kim, Sang-Won;Baek, Ki-Myoung;Lee, Gye-Won
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.505-512
    • /
    • 2011
  • Psolarea corylifolia extract that contains bakuchiol is known to have anti-microbial, anti-inflammatory and anti-scarring effects. In this study, a vesicles such as liposome, niosome, and transfersome were produced to encapsulate P. corylifolia extract and measured their stability and physiochemical property. The skin permeation and partitioning of P. corylifolia extract in the vesicles were elucidated in nude mouse skin by using Franz diffusion cells after topical application for 24 h. After storage at 25, 40, $70^{\circ}C$, and light, the stability of bakuchiol incorporated into the vesicles was maintained for 30 days. The optimal concentration of P. corylifolia extract entrapped into the vesicles was found to be 5~10%. From the physicochemical studies, after storage at 4, 25, and $40^{\circ}C$, the viscosity and particle size of the vesicles remained in 30~80 cP and the nanosize range for 6 months, respectively. From the permeation experiments, niosome showed a higher amount of bakuchiol permeated through the mouse skin compared to liposome and transfersome after 24 h. From these results, niosome and transfersome could be a good bioavailability enhancement system (BAES) for P. corylifolia extract to improve the skin permeation and stability.

Formulation of Microemulsion Systems for Transdermal Delivery of Aceclofenac

  • Lee, Jae-Hwi;Lee, Yoon-Jin;Kim, Jong-Seok;Yoon, Mi-Kyeong;Choi, Young-Wook
    • Archives of Pharmacal Research
    • /
    • v.28 no.9
    • /
    • pp.1097-1102
    • /
    • 2005
  • An O/W microemulsion system was developed to enhance the skin permeability of ace-clofenac. Of the oils studied, Labrafil? M 1944 CS was chosen as the oil phase: of the microemulson, as it showed a good solubilizing capacity. Pseudo-ternary phase diagrams were constructed to obtain the concentration range of oil, surfactant, Cremophor ELP, and co-surfactant, ethanol, for micoemulsion formation. Eight different formulations with various values of oil of $6-30\%$, water of $0-80\%$, and the mixture of surfactant and co-surfactant (at the ratio of 2) of $14-70\%$. The in vitro transdermal permeability of aceclofenac from the microemulsions was evaluated using Franz diffusion cells mounted with rat skin. The level of aceclofenac permeated was analyzed by HPLC and the droplet size' of the microemulsions was characterized using a Zetasizer Nano-ZS. Terpenes were added to the microemulsions at a level of $5\%$, and their effects on the skin permeation of aceclofenac were investigated. The mean diameters of the microemulsions ranged between approximately $10\~100nm$, and the skin permeability of the aceclofenac incorporated into the microemulsion systems was 5-fold higher than that of the ethanol vehicle. Of the various terpenes added, limonene had the best enhancing ability. These results indicate that the microemulsion pystem studied is a promising tool for the percutaneous delivery of aceclofenac.