• Title/Summary/Keyword: framed tube building

Search Result 11, Processing Time 0.022 seconds

Comparison of shear lag in structural steel building with framed tube and braced tube

  • Mazinani, Iman;Jumaat, Mohd Zamin;Ismail, Z.;Chao, Ong Zhi
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.297-309
    • /
    • 2014
  • Under lateral loads Framed Tube (FT) system exhibits reduction of cantilever efficiency due to the effect of shear lag. Braced Tube (BT) represents a valuable solution to overcome shear lag problems by stiffening the exterior frame with diagonal braced members. This study investigates the effect of shear lag on BT and FT under wind load. Shear lag and top-level displacement results are compared with previous findings by researchers on FT and BT systems. The investigation of the effect of various configurations in BT on the reduction the shear lag is another objective of this study. The efficiency of each structure is evaluated using the linear response spectrum analysis to obtain shear lag. STADD Pro software is used to run the dynamic analysis of the models. Results show there is relatively less shear lag in all the BT configurations compared to the FT structural system. Moreover, the comparison of the obtained result with those derived by previous studies shows that shear lag is not proportional to lateral displacement. With respect to results, optimum BT configuration in term of lower shear lag caused by lateral loads is presented.

A simple mathematical model for static analysis of tall buildings with two outrigger-belt truss systems

  • Rahgozar, Reza;Ahmadi, Ali Reza;Hosseini, Omid;Malekinejad, Mohsen
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.65-84
    • /
    • 2011
  • In this paper a simple mathematical model for approximate static analysis of combined system of framed tube, shear core and two outrigger-belt truss structures subjected to lateral loads is presented. In the proposed methodology, framed tube is modeled as a cantilevered beam with a box section and interaction between shear core and outrigger-belt truss system with framed tube is modeled using torsional springs placed at location of outrigger-belt truss; these torsional springs act in a direction opposite to rotation generated by lateral loads. The effect of shear lag on axial deformation in flange is quadratic and in web it is a cubic function of geometry. Here the total energy of the combined system is minimized with respect to lateral deflection and rotation in plane section. Solution of the resulting equilibrium equations yields the unknown coefficients of shear lag along with the stress and displacement distributions. The results of a numerical example, 50 storey building subjected to three different types of lateral loading obtained from SAP2000 are compared to those of the proposed method and the differences are found to be reasonable. The proposed method can be used during the preliminary design stages of a tall building and can provide a better understanding of the effects of various parameters on the overall structural behavior.

Evaluating high performance steel tube-framed diagrid for high-rise buildings

  • Lee, Dongkyu;Ha, Taehyu;Jung, Miyoung;Kim, Jinho
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.289-303
    • /
    • 2014
  • In recent, development of construction and design technology gives taller, larger and heavier steel framed structures. With the tendency of increasing high-rise building, this study is strongly related to structural system, one of significant components in structural design. This study presents an innovative structural system, with high performance steel material, diagrid. Its detail, structural analysis, and structural experiments are all included for the development of new structures.

Seismic vulnerability evaluation of a 32-story reinforced concrete building

  • Memari, A.M.;Motlagh, A.R. Yazdani;Akhtari, M.;Scanlon, A.;Ashtiany, M. Ghafory
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.1-18
    • /
    • 1999
  • Seismic evaluation of a 32-story reinforced concrete framed tube building is performed by checking damageability, safety, and toughness limit states. The evaluation is based on Standard 2800 (Iranian seismic code) which recommends equivalent lateral static force, modal superposition, or time history dynamic analysis methods to be applied. A three dimensional linearly elastic model checked by ambient vibration test results is used for the evaluation. Accelerograms of three earthquakes as well as linearly elastic design response spectra are used for dynamic analysis. Damageability is checked by considering story drift ratios. Safety is evaluated by comparing demands and capacities at the story and element force levels. Finally, toughness is studied in terms of curvature ductility of members. The paper explains the methodology selected and various aspects in detail.

Shear Lag in Framed Tube Structures with Multiple Internal Tubes (복수의 내부 튜브를 가진 골조 튜브 구조물의 Shear Lag)

  • 이강건;이리형
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.351-360
    • /
    • 2000
  • A simple numerical modelling technique is proposed for estimating the shear lag effects of framed-tube system with multiple internal tubes. The tube(s)-in-tube structure is analysed by using an analogy approach in which each tube is individually modelled by a beam that can accounts for the flexural and shear deformations, as well as the shear lag effects. The numerical analysis is based on the minimum potential energy principle in conjunction with the variational approach. The shear lag phenomenon of such structures is studied with additional bending stresses. Structural parameters governing the shear lag behaviour in tube(s)-in-tube structures are also investigated through thirty-three numerical examples.

  • PDF

Free vibration analysis of combined system with variable cross section in tall buildings

  • Jahanshahia, Mohammad Reza;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.715-728
    • /
    • 2012
  • This paper deals with determining the fundamental frequency of tall buildings that consist of framed tube, shear core, belt truss and outrigger systems in which the framed tube and shear core vary in size along the height of the structure. The effect of belt truss and outrigger system is modeled as a concentrated rotational linear spring at the belt truss and outrigger system location. Many cantilevered tall structures can be treated as cantilevered beams with variable cross-section in free vibration analysis. In this paper, the continuous approach, in which a tall building is replaced by an idealized cantilever continuum representing the structural characteristics, is employed and by using energy method and Hamilton's variational principle, the governing equation for free vibration of tall building with variable distributed mass and stiffness is obtained. The general solution of governing equation is obtained by making appropriate selection for mass and stiffness distribution functions. By applying the separation of variables method for time and space, the governing partial differential equation of motion is reduced to an ordinary differential equation with variable coefficients with the assumption that the transverse displacement is harmonic. A power-series solution representing the mode shape function of tall building is used. Applying boundary conditions yields the boundary value problem; the frequency equation is established and solved through a numerical process to determine the natural frequencies. Computer program has been developed in Matlab (R2009b, Version 7.9.0.529, Mathworks Inc., California, USA). A numerical example has been solved to demonstrate the reliability of this method. The results of the proposed mathematical model give a good understanding of the structure's dynamic characteristics; it is easy to use, yet reasonably accurate and suitable for quick evaluations during the preliminary design stages.

An Experimental Study on Concrete Filled Steel Tube Column of Mock-up test take advantage of the High Strength Concerete(over the 80MPa) (초고강도 콘크리트(800kgf/$\textrm{cm}^2$ 이상)를 이용한 콘크리트충전 강관기둥에 대한 실물대 실험)

  • 이장환;공민호;전판근;정근호;이영도;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.21-25
    • /
    • 2004
  • The column for Steel Framed Reinforced Concrete Structure (SFRCS) and the column for Reinforced Concrete Structure (RCS) could be the most common building structure. The increasing of the need for massive space hasaffected the size of building components for supporting the massive structure. However, the changing of components size makes inefficient space of building. Hence, to meet the need for acquiring efficient space comparing the budget and cost the new structure method, Concrete Filled Tube Steel (CFT), was developed. CFT is the structure for which steel tube instead of other materials such as wood for holding concrete is used. The most benefit of this one is to help in reducing the size of the building components and local buckling because of tube steel holding concrete. For this reason, this research will examine the probability of applying CFT on construction sites by using the concrete (800kgf/$\textrm{cm}^2$) especially for CFT through the data from the real size mock-up.

  • PDF

An Experimental Study on the Mock-up test take advantage of the High Strength Concrete (초고강도 콘크리트를 이용한 CFT실물대 실험)

  • Son Young Jun;Kim Jae Eun;Yang Dong Il;Jung Keun Ho;Lim Nam Gi;Jung Sang Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.458-461
    • /
    • 2004
  • The column for Steel Framed Reinforced Concrete Structure (SFRCS) and the column for Reinforced Concrete Structure (RCS) could be the most common building structure. The increasing of the need for massive space hasaffected the size of building components for supporting the massive structure. However, the changing of components size makes inefficient space of building. Hence. to meet the need for acquiring efficient space comparing the budget and cost the new structure method, Concrete Filled Tube Steel (CFT), was developed. CFT is the structure for which steel tube instead of other materials such as wood for holding concrete is used. The most benefit of this one is to help in reducing the size of the building components and local buckling because of tube steel holding concrete. For this reason, this research will examine the probability of applying CFT on construction sites by using the concrete $(800kg/cm^2)$ especially for CFT through the data from the real size mock-up.

  • PDF

Seismic design and elastic-plastic analysis of the hengda group super high-rise office buildings

  • Zhang, Xiaomeng;Ren, Qingying;Liu, Wenting;Yang, Songlin;Zhou, Yilun
    • Earthquakes and Structures
    • /
    • v.19 no.3
    • /
    • pp.175-188
    • /
    • 2020
  • The Hengda Group super high-rise building in Jinan City uses the frame-core tube structural system. With a height of 238.3 m, it is above the B-level height limit of 150 m for buildings within 7-magnitude seismic fortification zones. Therefore, it is necessary to apply performance-based seismic design to this super high-rise building. In this study, response spectrum analysis and comparative analysis of the structure are conducted using two software applications. Moreover, elastic time-history analysis, seismic analysis under an intermediate earthquake, and elastic-plastic time-history analysis under rare earthquakes are performed. Based on the analysis results, corresponding strengthening measures are implemented at weaker structural locations, such as corners, wall ends connected to framed girders, and coupling beams connected to framed girders. The failure mode and failure zone of major stress components of the structure under rare earthquakes are analysed. The conclusions to this research demonstrate that weaker locations and important parts of the structure satisfy the requirements for elastic-plastic deformation in the event of rare earthquakes.

Optimal stiffness distribution in preliminary design of tubed-system tall buildings

  • Alavi, Arsalan;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.731-739
    • /
    • 2018
  • This paper presents an optimal pattern for distributing stiffness along a framed tube structure through an analytic equation, which may be used during the preliminary design stage. Most studies in this field are computationally intensive and time consuming, while a hand-calculation method, as presented here, is a more suitable tool for sensitivity analyses and parametric studies. Approach in development of the analytic model is to minimize the mean compliance (external work) for a given volume of material. A variational statement of the problem is made, and a specified deformation-profile is obtained as the necessary condition for a minimum; enforcing this condition, stiffness is then computed. Due to some near-zero values for stiffness, the problem is modified by considering a lower bound constraint. To deal with this constraint, the design domain is assumed to be divided into two zones of constant stiffness and constant curvature; and the problem is restated in terms of these concepts. It will be shown that this methodology allows for easy computation of stiffness through an analytic and dimensionless equation, valid in any system of units. To show practicality of the proposed method, a tubed-system structure with uniform stiffness distribution is redesigned using the proposed model. Comparative analyses of the results reveal that in addition to simplicity of the proposed method, it provides a rather high degree of accuracy for real-world problems.