• Title/Summary/Keyword: framed and slotted ALOHA

Search Result 27, Processing Time 0.018 seconds

Efficient Anti-collision Method based on Tag Estimation in RFID systems (RFID시스템에서 태그 수 추정을 이용한 효율적인 충돌 회피 기법)

  • Shin, Song-Yong;Hwang, Gyung-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.616-619
    • /
    • 2012
  • When multiple Tags transmit their IDs to the Reader, tag identification time is delayed due to collisions. Therefore, to reduce the reader's identification time, an efficient anti-collision technology is needed. In this paper, a new anti-collision method is proposed. The method estimates the number of tags and allocates proper number of slots based on the DFSA. The performance of proposed method is compared with existing methods through extensive simulations.

  • PDF

Accelerating RFID Tag Identification Processes with Frame Size Constraint Relaxation

  • Park, Young-Jae;Kim, Young-Beom
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.242-247
    • /
    • 2012
  • In the determination of suitable frame sizes associated with dynamic framed slotted Aloha used in radio frequency identification tag identification processes, the widely imposed constraint $L=2^Q$ often yields inappropriate values deviating far from the optimal values, while a straightforward use of the estimated optimal frame sizes causes frequent restarts of read procedures, both resulting in long identification delays. Taking a trade-off, in this paper, we propose a new method for determining effective frame sizes where the effective frame size changes in a multiple of a predetermined step size, namely ${\Delta}$. Through computer simulations, we show that the proposed scheme works fairly well in terms of identification delay.

A Study on Performance Enhancement of RFID Anti-Collision Protocols (RFID 충돌방지 프로토콜의 성능 개선에 관한 연구)

  • Kim, Young-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.281-285
    • /
    • 2011
  • One of the key issues in implementing RFID systems is to design anti-collision protocols for identifying all the tags in the interrogation zone of a RFID reader with the minimum identification delay. In this paper, Furthermore, in designing such protocols, the limited resources in tags and readers in terms of memory and computing capability should be fully taken into consideration. we first investigate two typical RFID anti-collision algorithms, namely RFID Gen2 Q algorithm (accepted as the worldwide standard in industrial domain) and FAFQ algorithm including their drawbacks and propose a new RFID anti-collision algorithm, which can improve the performance of RFID systems in terms of tag identification time considerably. Further, we compared performance of the proposed algorithm with Q algorithm and FAFQ algorithm through computer simulation.

Randomized Scheme for Cognizing Tags in RFID Networks and Its Optimization

  • Choi, Cheon Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1674-1692
    • /
    • 2018
  • An RFID network is a network in which a reader inquire about the identities of tags and tags respond with their identities to a reader. The diversity of RFID networks has brought about many applications including an inexpensive system where a single reader supports a small number of tags. Such a system needs a tag cognizance scheme that is able to arbitrate among contending tags as well as is simple enough. In this paper, confining our attention to a clan of simple schemes, we propose a randomized scheme with aiming at enhancing the tag cognizance rate than a conventional scheme. Then, we derive an exact expression for the cognizance rate attained by the randomized scheme. Unfortunately, the exact expression is not so tractable as to optimize the randomized scheme. As an alternative way, we develop an upper bound on the tag cognizance rate. In a closed form, we then obtain a nearly optimal value for a key design parameter, which maximizes the upper bound. Numerical examples confirm that the randomized scheme is able to dominate the conventional scheme in cognizance rate by employing a nearly optimal value. Furthermore, they reveal that the randomized scheme is robust to the fallacy that the reader believes or guesses a wrong number of neighboring tags.

Improvement of Tag Collection Performance for Active RFID Systems (능동형 RFID 시스템을 위한 태그 수집 성능 개선)

  • Yoon, Won-Ju;Chung, Sang-Hwa;Moon, Young-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.518-527
    • /
    • 2008
  • Tag collection is one of the major functions in Radio Frequency Identification (RFID) systems. IS0/IEC 18000-7 defines the tag collection algorithm using the anti-collision algorithm, based on the framed slotted ALOHA for active RFID systems. However, it has inefficiency problems that reduce tag collection performance by deciding non-optimum slot size or using point-to-point commands to put collected tags to sleep. In this paper, we propose two mechanisms to overcome the inefficiency problems and improve tag collection performance: 1) a new slot size decision mechanism to allow the reader to choose the optimum slot size flexibly and 2) a broadcast-based sleep mechanism to put collected tags to sleep effectively. We also implemented an active RFID system, composed of an active RFID reader and multiple tags, and the reader is designed to maximize tag collection performance when the proposed mechanisms are applied. In experiments, we evaluated the tag collection performance using one reader and 50 tags in the real-world environment. The experimental results show that when two mechanisms are applied and the initial number of slots is chosen appropriately, the performance of the proposed tag collection algorithm is greatly enhanced, compared with that of the standard.

A Message Reduction Method for Performance Improvement of the ISO/IEC 18000-7 based Active RFID System (ISO/IEC 18000-7 기반 능동형 RFID 시스템의 성능 개선을 위한 메시지 감소 기법)

  • Yoon, Won-Ju;Chung, Sang-Hwa;Kang, Su-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12B
    • /
    • pp.1459-1467
    • /
    • 2009
  • In this paper, we propose a novel method for improving the tag collection performance in active RFID systems by modifying the tag collection algorithm in the ISO/IEC 18000-7 standard. The proposed method enables to reduce the time slot size by reducing the response message size from the tag and to decrease the number of command messages from the reader throughout the tag collection process. This results in reducing the time required for tag collection and the battery consumption on tags by decreasing the total amount of messages. Via the simulation experiments, we evaluated the performance of the tag collection applied with the proposed method, compared with that of the basic tag collection complying with the standard. The simulation results showed that the proposed method could decrease the total amount of messages between the reader and tags dramatically and reduce the average tag collection time by 19.99% and 16.03% when the reader requested the additional data of 50 bytes and 100 bytes from the tags, respectively.

Fast Congestion Control to Transmit Bursty Traffic Rapidly in Satellite Random Access Channel (위성 랜덤 액세스 채널에서 Bursty 트래픽의 신속한 전송을 위한 빠른 혼잡 제어 기법)

  • Noh, Hong-Jun;Lee, Yoon-Seong;Lim, Jae-Sung;Park, Hyung-Won;Lee, Ho-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1031-1041
    • /
    • 2014
  • In this paper, we propose a traffic load control scheme, called fast congestion control (FCC), for a satellite channel using enhanced random access schemes. The packet repetition used by enhanced random access schemes increases not only the maximum throughput but also the sensitivity to traffic load. FCC controls traffic load by using an access probability, and estimates backlogged traffic load. If the backlogged traffic load exceeds the traffic load corresponding to the maximum throughput, FCC recognizes congestion state, and processes the backlogged traffic first. The new traffic created during the congestion state accesses the channel after the end of congestion state. During the congestion state, FCC guarantees fast transmission of the backlogged traffic. Therefore, FCC is very suitable for the military traffic which has to be transmit urgently. We simulate FCC and other traffic load control schemes, and validate the superiority of FCC in latency.