• Title/Summary/Keyword: frame finite element

Search Result 856, Processing Time 0.027 seconds

The Finite Element Analysis of Car Seat Frame According to The FMVSS Strength Test (FMVSS 강도테스트에 다른 자동차 시트프레임의 유한요소해석)

  • 이호용;임중연;범형택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.241-247
    • /
    • 1999
  • This study presents the structural analysis of car a seat frame by the finite element method. The load-deformation characteristics of seat frame are simulated according to the test requirements by FMVSS. Three dimensional modeling technique is applied to the components of the seat frame. The shell, solid , gap and rigid elements are employed to model the car seat frame assembly. Numerical results show that the recliner and kunckle plate are identified as the possible weak part of frame, and the results are well consistent with the experimental static load test. The current analysis model can provide useful informations to design a new car seat and can reduce the overall design cost and time.

  • PDF

Collapse behaviour in reciprocal frame structures

  • Garavaglia, Elsa;Pizzigoni, Attilio;Sgambi, Luca;Basso, Noemi
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.533-547
    • /
    • 2013
  • "Reciprocal Frame" refers to a self-supporting grid structure used both for floor and roof. Using Finite Element Methods for non-linear solid mechanics and frictional-contact, this paper intends to analytically and numerically investigate the collapse behaviour of a reciprocal frame structure made of fibre-reinforced concrete. Considering a simple 3-beam structure, it has been investigated using a solid finite element model. Once defined the collapse behaviour of the simple structure, the analysis has been generalized using a concentrated plasticity finite element method. Results provided will be useful for studying generic reciprocal frame structures with several beams.

Studies on two bay and three storey infilled frame with different interface materials: Experimental and finite element studies

  • Muthukumar, S.;Satyanarayanan, K.S.;Senthil, K.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.543-555
    • /
    • 2017
  • The non-linear behaviour of integral infilled frames (in which the infill and the frame are bonded together with help of various interface materials) is studied both experimentally and numerically. The experiments were carried out on one-sixth scale two-bay and three-storey reinforced concrete frames with and without infill against static cyclic loading. Three interface materials - cement mortar, cork and foam have been used in between the infill and the frame. The infill, interface and the frame are bonded together is called integral frame. The linear and non-linear behaviors of two dimensional bare frame and integral infilled frame have been studied numerically using the commercial finite element software SAP 2000. Linear finite element analysis has been carried out to quantify the effect of various interface materials on the infilled frames with various combinations of 21 cases and the results compared. The modified configuration that used all three interface materials offered better resistance above others. Therefore, the experiments were limited to this modified infilled frame case configuration, in addition to conventional (A1-integral infilled frame with cement mortar as interface) and bare frame (A0-No infill). The results have been compared with the numerical results done initially. It is found that stiffness of bare frame increased by infilling and the strength of modified frame increased by 20% compare to bare frame. The ductility ratio of modified infilled frame was 42% more than that of the conventional infilled frame. In general, the numerical result was found to be in good agreement with experimental results for initial crack load, ultimate load and deformed pattern of infill.

Finite Element Analysis Piezocone Test I (피에조콘 시험의 유한요소 해석 I)

  • 김대규
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.183-190
    • /
    • 2000
  • In this research, the finite element analysis of piezocone penetration and dissipation tests have been conducted using the anisotropic elastoplastic-viscoplastic bounding surface model in the Updated Lagrangian reference frame for the large deformation and finite strain nu\ature of piezocone penetration. Accordingly, virtual work equation and corresponding finite element equations have been reformulated. Theory of mixtures has been incorporated to explain the behavior of the sol. It has been observed that the viscoplastic part of the soil model affected the whole formulation. The results of the finite element analysis have been compared and investigated with the experimental results. The formulations and the results are described in part 'I' and part 'II', respectively.

  • PDF

Evaluation of Probabilistic Finite Element Method in Comparison with Monte Carlo Simulation

  • 이재영;고홍석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.59-66
    • /
    • 1990
  • Abstract The formulation of the probabilistic finite element method was briefly reviewed. The method was implemented into a computer program for frame analysis which has the same analogy as finite element analysis. Another program for Monte Carlo simulation of finite element analysis was written. Two sample structures were assumed and analized. The characteristics of the second moment statistics obtained by the probabilistic finite element method was examined through numerical studies. The applicability and limitation of the method were also evaluated in comparison with the data generated by Monte Carlo simulation.

  • PDF

A Study on the Weight Optimization for the Passenger Car Seat Frame Part (상용승용차 시트프레임 부품의 중량 최적화에 관한 연구)

  • Jang, In-Sik;Min, Byeong-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.155-163
    • /
    • 2006
  • Car seat is one the most important element to make comfortable drivability. It can absorb the impact or vibration during driving state. In addition to those factors, it is needed to have enough strength for passenger safety. From energy efficiency and environmental point of view lighter passenger car seat frame becomes hot issue in the auto industry. In this paper, weight optimization methodology is investigated for commercial car seat frame using CAE. Optimized designs for seat frame are developed using commercially available finite element code(ANSYS) and design of experiment method. At first, car seat frame is modelled using 3-D computer aided design tool(CATIA) and simplified for finite element modelling. Finite element analysis is carried out for the case of FMVSS 202 Head Restraint test to check the strength of the original seat frame. Two base brackets are selected as optimized elements that are the heaviest parts in the seat frame. After finite element analysis for the brackets with similar load condition to the previous test optimization technique is applied for 10% to 50% weight reduction. Design of experiment is utilized to obtain optimization design for the bracket based on the modified 50% weight reduction model in which outer shape of the bracket is conserved. Weight optimization models result in the decrease of the strength in spite of weight reduction. The more design points should be considered to get better optimized model. The more advanced optimization technique may be utilized for more parts of the seat frame to increase whole seat frame characteristics in the future.

3D finite element modelling of composite connection of RCS frame subjected to cyclic loading

  • Asl, Mohammad Hossein Habashizadeh;Chenaglou, Mohammad Reza;Abedi, Karim;Afshin, Hassan
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.281-298
    • /
    • 2013
  • Composite special moment frame is one of the systems that are utilized in areas with low to high seismicity to deal with earthquake forces. Composite moment frames are composed of reinforced concrete columns (RC) and steel beams (S); therefore, the connection region is a combination of steel and concrete materials. In current study, a three dimensional finite element model of composite connections is developed. These connections are used in special composite moment frame, between reinforced concrete columns and steel beams (RCS). Finite element model is discussed as a most reliable and low cost method versus experimental procedures. Based on a tested connection model by Cheng and Chen (2005), the finite element model has been developed under cyclic loading and is verified with experimental results. A good agreement between finite element model and experimental results was observed. The connection configuration contains Face Bearing Plates (FBPs), Steel Band Plates (SBPs) enveloping around the RC column just above and below the steel beam. Longitudinal column bars pass through the connection with square ties around them. The finite element model represented a stable response up to the first cycles equal to 4.0% drift, with moderately pinched hysteresis loops and then showed a significant buckling in upper flange of beam, as the in test model.

Strength and stiffness of cold-formed steel portal frame joints using quasi-static finite element analysis

  • Mohammadjani, Chia;Yousefi, Amir M.;Cai, Shu Qing;Clifton, G. Charles;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.727-734
    • /
    • 2017
  • This paper describes a quasi-static finite element analysis, which uses the explicit integration method, of the apex joint of a cold-formed steel portal frame. Such cold-formed steel joints are semi-rigid as a result of bolt-hole elongation. Furthermore, the channel-sections that are being connected have a reduced moment capacity as a result of a bimoment. In the finite element model described, the bolt-holes and bolt shanks are all physically modelled, with contact defined between them. The force-displacement curves obtained from the quasi-static analysis are shown to be similar to those of the experimental test results, both in terms of stiffness as well as failure load. It is demonstrated that quasi-static finite element analysis can be used to predict the behavior of cold-formed steel portal frame joints and overcome convergence issues experienced in static finite element analysis.

A Coupled Finite Element Analysis of Independently Modeled Substructures by Penalty Frame Method

  • Maenghyo Cho;Kim, Won-Bae
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1201-1210
    • /
    • 2002
  • A penalty frame method is proposed for the coupled analysis of finite elements with independently modeled substructures. Although previously reported hybrid interface method by Aminpour et al (IJNME, Vol 38, 1995) is accurate and reliable, it requires non-conventional special solution algorithm such as multifrontal solver. In present study, an alternative method has been developed using penalty frame constraints, which results in positive symmetric global stiffness matrices. Thus the conventional skyline solver or band solver can be utilized in the solution routine, which makes the present method applicable in the environment of conventional finite element commercial software. Numerical examples show applicability of the present method.

Bogie Frame Design Considering Fatigue Strength and Minimize Weight (피로 강도 및 경량화를 고려한 대차프레임 설계)

  • Park Byung Hwa;Kim Nam Po;Kim Jung Seok;Lee Kang Yong
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.579-584
    • /
    • 2004
  • In development of the bogie, the fatigue strength of the bogie frame is an important design criteria. Also the bogie frame weight reduction is required in order to save energy and materials. In this study. structural analysis of bogie frame by using the finite element method has been performed for the various loading conditions according to the UIC standards and it has been attempted minimize the weight of bogie frame by back-propagation neural network and genetic algorithm. Finite element mesh generation and finite element analysis were performed by Altaire Hyper Mesh and ABAQUS.

  • PDF