• Title/Summary/Keyword: fragility curves

Search Result 252, Processing Time 0.021 seconds

Damage index based seismic risk generalization for concrete gravity dams considering FFDI

  • Nahar, Tahmina T.;Rahman, Md M.;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.53-66
    • /
    • 2021
  • The determination of the damage index to reveal the performance level of a structure can constitute the seismic risk generalization approach based on the parametric analysis. This study implemented this concept to one kind of civil engineering structure that is the concrete gravity dam. Different cases of the structure exhibit their individual responses, which constitute different considerations. Therefore, this approach allows the parametric study of concrete as well as soil for evaluating the seismic nature in the generalized case. To ensure that the target algorithm applicable to most of the concrete gravity dams, a very simple procedure has been considered. In order to develop a correlated algorithm (by response surface methodology; RSM) between the ground motion and the structural property, randomized sampling was adopted through a stochastic method called half-fractional central composite design. The responses in the case of fluid-foundation-dam interaction (FFDI) make it more reliable by introducing the foundation as being bounded by infinite elements. To evaluate the seismic generalization of FFDI models, incremental dynamic analysis (IDA) was carried out under the impacts of various earthquake records, which have been selected from the Pacific Earthquake Engineering Research Center data. Here, the displacement-based damage indexed fragility curves have been generated to show the variation in the seismic pattern of the dam. The responses to the sensitivity analysis of the various parameters presented here are the most effective controlling factors for the concrete gravity dam. Finally, to establish the accuracy of the proposed approach, reliable verification was adopted in this study.

Seismic Retrofit Assessment of Different Bracing Systems

  • Sudipta Chakraborty;Md. Rajibul Islam;Dookie Kim;Jeong Young Lee
    • Architectural research
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Structural ageing influences the structural performance in a negative way by reducing the seismic resilience of the structure which makes it a major concern around the world. Retrofitting is considered to be a pragmatic and feasible solution to address this issue. Numerous retrofitting techniques are devised by researchers over the years. The viability of using steel bracings as retrofitting component is evaluated on a G+30 storied building model designed according to ACI318-14 and ASCE 7-16. Four different types of steel bracing arrangements (V, Inverted V/ Chevron, Cross/ X, Diagonal) are assessed in the model developed in commercial nu-merical analysis software while considering both material and geometric nonlinearities. Reducing displacement and cost in the structures indicates that the design is safe and economical. Therefore, the purpose of this article is to find the best bracing system that causes minimum displacement, which indicates maximum lateral stiffness. To evaluate the seismic vulnerability of each system, incremental dynamic analysis was conducted to develop fragility curves, followed by the formation of collapse margin ratio (CMR) as stipulated in FEMA P695 and finally, a cost estimation was made for each system. The outcomes revealed that the effects of ge-ometric nonlinearity tend to evoke hazardous consequences if not considered in the structural design. Probabilistic seismic and economic probes indicated the superior performance of V braced frame system and its competency to be a germane technique for retrofitting.

Diverse modeling techniques, parameters, and assumptions for nonlinear dynamic analysis of typical concrete bridges with different pier-to-deck connections: which to use and why

  • Morkos, B.N.;Farag, M.M.N.;Salem, S.;Mehanny, S.S.F.;Bakhoum, M.M.
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.245-261
    • /
    • 2022
  • Key questions to researchers interested in nonlinear analysis of skeletal structures are whether the distributed plasticity approach - albeit computationally demanding - is more reliable than the concentrated plasticity to adequately capture the extent and severity of the inelastic response, and whether force-based formulation is more efficient than displacement-based formulation without compromising accuracy. The present research focusing on performance-based seismic response of mid-span concrete bridges provides a pilot holistic investigation opting for some hands-on answers. OpenSees software is considered adopting different modeling techniques, viz. distributed plasticity (through either displacement-based or force-based elements) and concentrated plasticity via beam-with-hinges elements. The pros and cons of each are discussed based on nonlinear pushover analysis results, and fragility curves generated for various performance levels relying on incremental dynamic analyses under real earthquake records. Among prime conclusions, distributed plasticity modeling albeit inherently not relying on prior knowledge of plastic hinge length still somewhat depends on such information to ensure accurate results. For instance, displacement-based and force-based approaches secure optimal accuracy when dividing, for the former, the member into sub-elements, and satisfying, for the latter, a distance between any two consecutive integration points, close to the expected plastic hinge length. On the other hand, using beam-with-hinges elements is computationally more efficient relative to the distributed plasticity, yet with acceptable accuracy provided the user has prior reasonable estimate of the anticipated plastic hinge length. Furthermore, when intrusive performance levels (viz. life safety or collapse) are of concern, concentrated plasticity via beam-with-hinges ensures conservative predicted capacity of investigated bridge systems.

Seismic Risk Assessment of Extradosed Bridges with Lead Rubber Bearings (LRB 면진장치가 설치된 엑스트라도즈드교의 지진위험도 평가)

  • Kim, Doo Kie;Seo, Hyeong Yeol;Yi, Jin-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.155-162
    • /
    • 2006
  • This study presents the seismic risk assesment for an extradosed bridge with seismic isolators of lead rubber bearings(LRB). First, the seismic vulnerability of a structure and then the seismic hazard of the site are evaluated using earthquake data set and seismic hazard map in Korea, and then the seismic risk of the structure is assessed. The nonlinear seismic analyses are carried out to consider plastic hinges of bridge columns and nonlinear characteristics of soil foundation. The ductility demand is adopted to describe the nonlinear behavior of a column, and the moment-curvature curve of a column is assumed to be bilinear hysterestic. The fragility curves are represented as a log-normal distribution function for column damage, movement of superstructure, and cable yielding. And seismic hazard is estimated using the available seismic hazard maps. The results show that the effectiveness of the seismic isolators for the columns is more noticeable than those for cables and girders, in seismic isolated extradosed bridges under earthquakes.

Building Damage Functions Using Limited Available Data for Volcanic Ash Loss Estimation (가용자료가 제한된 경우 화산재 피해 예측을 위한 손상함수 구축)

  • Yu, Soonyoung;Yoon, Seong-Min;Jiang, Zhuhua;Choi, Miran
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.524-535
    • /
    • 2013
  • Catastrophe risk models require the damage functions of each vulnerable item in inventory to estimate volcanic ash losses. The damage functions are used to represent the relation between damage factors and damage and also widely used in engineering and natural hazard studies to calculate the vulnerability. In most cases, damage functions are constructed as fragility or vulnerability curves, and researchers are confused by the similarities between them particularly when they perform interdisciplinary research. Thus, we aim to explain the similarities and differences between fragility and vulnerability curves and their relationship by providing case studies to construct them. In addition, we suggest a simple method to construct the damage functions between damage ratio and volcanic ash thickness using limited damage data. This study comes from the fact that damage functions are generally constructed using damage data. However, there is no available volcanic ash damage data in Korea, and not even enough volcanic disaster data to construct damage functions in the world, compared to other hazards. Using the method suggested in the study and the limited damage data from Japan and New Zealand, we construct Weibull-type functions or linear functions dependent of available data to calculate volcanic ash loss estimation, which we think need to be corrected to make it more suitable for inventory characteristics and environmental conditions in Korea.

Performance-based wind design of tall buildings: concepts, frameworks, and opportunities

  • Bezabeh, Matiyas A.;Bitsuamlak, Girma T.;Tesfamariam, Solomon
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.103-142
    • /
    • 2020
  • One of the next frontiers in structural wind engineering is the design of tall buildings using performance-based approaches. Currently, tall buildings are being designed using provisions in the building codes and standards to meet an acceptable level of public safety and serviceability. However, recent studies in wind and earthquake engineering have highlighted the conceptual and practical limitations of the code-oriented design methods. Performance-based wind design (PBWD) is the logical extension of the current wind design approaches to overcome these limitations. Towards the development of PBWD, in this paper, we systematically review the advances made in this field, highlight the research gaps, and provide a basis for future research. Initially, the anatomy of the Wind Loading Chain is presented, in which emphasis was given to the early works of Alan G. Davenport. Next, the current state of practice to design tall buildings for wind load is presented, and its limitations are highlighted. Following this, we critically review the state of development of PBWD. Our review on PBWD covers the existing design frameworks and studies conducted on the nonlinear response of structures under wind loads. Thereafter, to provide a basis for future research, the nonlinear response of simple yielding systems under long-duration turbulent wind loads is studied in two phases. The first phase investigates the issue of damage accumulation in conventional structural systems characterized by elastic-plastic, bilinear, pinching, degrading, and deteriorating hysteretic models. The second phase introduces methods to develop new performance objectives for PBWD based on joint peak and residual deformation demands. In this context, the utility of multi-variate demand modeling using copulas and kernel density estimation techniques is presented. This paper also presents joined fragility curves based on the results of incremental dynamic analysis. Subsequently, the efficiency of tuned mass dampers and self-centering systems in controlling the accumulation of damage in wind-excited structural systems are investigated. The role and the need for explicit modeling of uncertainties in PBWD are also discussed with a case study example. Lastly, two unified PBWD frameworks are proposed by adapting and revisiting the Wind Loading Chain. This paper concludes with a summary and a proposal for future research.

Rapid Seismic Vulnerability Assessment Method for Generic Structures (일반 구조물에 대한 신속한 지진 취약성 분석 방법)

  • Jeong, Seong-Hoon;Choi, Sung-Mo;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • Analytical probabilistic vulnerability analysis requires extensive computing effort as a result of the randomness in both input motion and response characteristics. In this study, a new methodology whereby a set of vulnerability curves are derived based on the fundamental response quantities of stiffness, strength and ductility is presented. A response database of coefficients describing lognormal vulnerability relationships is constructed by employing aclosed-form solution for a generalized single-degree-of-freedom system. Once the three fundamental quantities of a wide range of structural systems are defined, the vulnerability curves for various limit states can be derived without recourse to further simulation. Examples of application are given and demonstrate the extreme efficiency of the proposed approach in deriving vulnerability relationships.

Seismic performance of low-rise reinforced concrete moment frames under carbonation corrosion

  • Vaezi, Hossein;Karimi, Amir;Shayanfar, Mohsenali;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.215-224
    • /
    • 2021
  • The carbon dioxide present in the atmosphere is one of the main reasons for the corrosion of bridges, buildings, tunnels, and other reinforced concrete (RC) structures in most industrialized countries. With the growing use of fossil fuels in the world since the Industrial Revolution, the amount of carbon dioxide in urban and industrial areas of the world has grown significantly, which increases the chance of corrosion caused by carbonation. The process of corrosion leads to a change in mechanical properties of rebars and concrete, and consequently, detrimentally impacting load-bearing capacity and seismic behavior of RC structures. Neglecting this phenomenon can trigger misleading results in the form of underestimating the seismic performance metrics. Therefore, studying the carbonation corrosion influence on the seismic behavior of RC structures in urban and industrial areas is of great significance. In this study, a 2D modern RC moment frame is developed to study and assess the effect of carbonation corrosion, in 5-year intervals, for a 50 years lifetime under two different environmental conditions. This is achieved using the nonlinear static and incremental dynamic analysis (IDA) to evaluate the reinforcement corrosion effects. The reduction in the seismic capacity and performance of the reinforced concrete frame, as well as the collapse probability over the lifetime for different corrosion scenarios, is examined through the capacity curves obtained from nonlinear static analysis and the fragility curves obtained from IDA.

A Case Study of Personal and Creative Fashion Design Development: Swirls in Motion - a Goddess and Seashells -

  • Choi, Kyung-Hee
    • International Journal of Costume and Fashion
    • /
    • v.6 no.1
    • /
    • pp.1-19
    • /
    • 2006
  • This case study is to embody the birth of a beautiful goddess out of seashells in a contemporary fashion design collection, on the basis of the mythology of The Birth of Venus. The main theme attempts to reinterpret the image of the goddess of love and beauty and express the organic vitality of seashells and oceanic feelings by swirls in motion. To accomplish this, three dimensional silhouette of layered forms of voluminous outer and fitted inner is applied to design ideas with spiral curves. The opposite texture of something sculptural and transparent versus smooth and shiny is used to express the layered structure of seashells with the delicacy of goddess. Neutral colours and different tones of pink appeal to oceanic feelings and feminine emotion in a modern way. Various techniques by the geometric simplicity of flat patterns and pleating with boning are also performed to express the vital movement of organism. Throughout the whole process of this case study, the conceptual idea of Swirls in Motion - a goddess and seashells is reinterpreted to a contemporary fashion by personal and creative design development process. In particular, it is evaluated by the process of primary researches, various design developments and experimentations to the main theme.

Development of an integrated approach for Algerian building seismic damage assessment

  • Boukri, Mehdi;Farsi, Mohammed Naboussi;Mebarki, Ahmed;Belazougui, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.471-493
    • /
    • 2013
  • This paper presents a framework for seismic damage evaluation for Algerian buildings adapted from HAZUS approach (Hazard-United States). Capacity and fragility curves were adapted to fit the Algerian building typologies (Reinforced Concrete structures, Confined or Non-Confined Masonry, etc). For prediction purposes, it aims to estimate the damages and potential losses that may be generated by a given earthquake in a prone area or country. Its efficiency is validated by comparing the estimated and observed damages in Boumerd$\grave{e}$s city, in the aftermath of Boumerd$\grave{e}$s earthquake (Algeria: May $21^{st}$ 2003; $M_w$ = 6.8). For this purpose, observed damages reported for almost 3,700 buildings are compared to the theoretical predictions obtained under two distinct modelling of the seismic hazard. In one hand, the site response spectrum is built according to real accelerometric records obtained during the main shock. In the other hand, the effective Algerian seismic code response spectrum (RPA 99) in use by the time of the earthquake is considered; it required the prior fitting of Boumerd$\grave{e}$s site PGA (Peak Ground Acceleration) provided by Ambraseys' attenuation relationship.