• Title/Summary/Keyword: fragility curve

Search Result 159, Processing Time 0.023 seconds

Probabilistic Assessment of Seepage Stability of Soil Foundation under Water Retaining Structures by Fragility Curves (취약도 곡선에 의한 수리구조물 하부 지반의 확률론적 침투 안정성 평가)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.41-54
    • /
    • 2021
  • In this study, probabilistic steady seepage behavior of soil foundation beneath water retaining structures according to the location of cutoffs was studied. A Monte Carlo Simulation based on the random finite element method that considers the uncertainty and spatial variability of soil permeability was performed to evaluate the probabilistic seepage behavior. Fragility curves were developed by calculating the failure probability conditional on the occurrence of a given water level from the probability distribution obtained from Monte Carlo simulations. The fragility curve was prepared for the flow quantities such as flow rate through foundation soil, uplift force on the base of structure, and exit gradient in downstream to examine the reliability of the water retaining structure and the foundation soil. From the fragility curves, the effect of the location of cutoff wall on the reliability of water retaining structure and foundation soil according to the rise in water level was studied.

On the Red Cell Fragility in the Normal and Anemic Professional Blood Donors (건강인(健康人) 및 직업적(職業的) 매혈(賣血)로 인(因)한 실혈성(失血性) 빈혈자(貧血者)의 적혈구(赤血球) 취약성(脆弱性)에 관(關)하여)

  • Lee, Suck-Kang;Yoo, Kwang-Soo;Kim, Hyung-Kyu;Kwak, Dong-Soo
    • The Korean Journal of Physiology
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 1971
  • The osmotic and mechanical red cell fragility of the professional blood donors, who were found to be anemic as the result of frequent and repeated blood loss the past 5-6 years, were compared with that of the normal person while incubating the blood at $4-6^{\circ}C$ for 28 days. The fragility was expressed as % hemolysis occured during the incubation, and the following results were obtained: 1. The osmotic fragility in the normal persons (i.e, ; control group) progressively increased as the incubation became longer, and % hemolysis in 0.42% NaCl solution at 0, 10, 15, 21 and 28 incubation day was 31.90, 50.20, 41.68, 43.50 and 55.40 respectively. The mechanical fragility. in the normal red cells ranged between the minimum of 0.00% to the maximum of 5.80% both in 0.90 and 0.66% of NaCl solutions. 2. The hemolysis curve obtained in the red cell osmotic fragility from three cases of the anemic persons (i.e,; experimental group) showed a significant left side shift comparing with the normal in general which indicates that the fragility was more increased in the experimental group. The mechanical fragility in the experimental group ranged between the minimum 0.00% to the maximum 19.00% both in 0.90 and 0.66% of NaCl solutions. 3. The red cells of the chronic anemic person due to the frequent blood loss as the professional blood donor exhibit significantly marked increase both in osmotic and mechanical fragility comparing with the normal, and the tendency was more prominent as the incubation period became longer.

  • PDF

Development of Stochastic Seismic Performance Evaluation Method for Structural Performance Point Based on Capacity Spectrum Method (역량스펙트럼법을 통한 구조물 성능점의 확률적 기반 내진성능평가기법 개발)

  • Choi, Insub;Jang, Jisang;Kim, JunHee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.523-530
    • /
    • 2017
  • In this study, a method of probabilistic evaluation of the performance point of the structure obtained by capacity spectrum method (CSM) is presented. The performance point of the 4-story and 1-bay steel structure was determined by using CSM according to ATC-40. In order to analyze whether the demand spectrums exceed the performance limit of the structure, the limit displacements are derived for the performance limit of the structure defined from the plastic deformation angle of the structural member. In addition, by selecting a total of 30 artificial seismic wave having the response spectrum similar to the design response spectrum, the fragility curves were derived by examining whether the response spectrum obtained from the artificial seismic wave were exceeded each performance limit according to the spectral acceleration. The maximum likelihood method was used to derive the fragility curve using observed excess probabilities. It has been confirmed that there exists a probability that the response acceleration value of the design response spectrum corresponding to each performance limit exceeds the performance limit. This method has a merit that the stochastic evaluation can be performed considering the uncertainty of the seismic waves with respect to the performance point of the structure, and the analysis time can be shortened because the incremental dynamic analysis (IDA) is not necessary.

Seismic Fragility Assessment of Liquid Storage Tanks by Finite Element Reliability Analysis (유한요소 신뢰성 해석을 통한 액체저장탱크의 지진 취약도 평가)

  • Lee, Sangmok;Lee, Young-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.718-725
    • /
    • 2017
  • A liquid storage tank is one of the most important structures in industrial complexes dealing with chemicals, and its structural damage due to an earthquake may cause a disastrous event such as the leakage of hazardous materials, fire, and explosion. It is thus essential to assess the seismic fragility of liquid storage tanks and prepare for seismic events in advance. When a liquid storage tank is oscillated by a seismic load, the hydrodynamic pressure caused by the liquid-structure interaction increases the stress and causes structural damage to the tank. Meanwhile, the seismic fragility of the structure can be estimated by considering the various sources of uncertainty and calculating the failure probabilities in a given limiting state. To accurately evaluate the seismic fragility of liquid storage tanks, a sophisticated finite element analysis is required during their reliability analysis. Therefore, in this study, FERUM-ABAQUS, a recently-developed computational platform integrated with commercial finite element and reliability analysis software packages, is introduced to perform the finite element reliability analysis and calculate the failure probability of a liquid storage tank subjected to a seismic load. FERUM-ABAUS allows for automatic data exchange between these two software packages and for the efficient seismic fragility assessment of a structure. Using this computational platform, the seismic fragility curve of a liquid storage tank is successfully obtained.

Intensity measure-based probabilistic seismic evaluation and vulnerability assessment of ageing bridges

  • Yazdani, Mahdi;Jahangiri, Vahid
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.379-393
    • /
    • 2020
  • The purpose of this study is to first evaluate the seismic behavior of ageing arch bridges by using the Intensity Measure - based demand and DCFD format, which is referred to as the fragility-hazard format. Then, an investigation is performed for their seismic vulnerability. Analytical models are created for bridges concerning different features and these models are subjected to Incremental Dynamic Analysis (IDA) analysis using a set of 22 earthquake records. The hazard curve and results of IDA analysis are employed to evaluate the return period of exceeding the limit states in the IM-based probabilistic performance-based context. Subsequently, the fragility-hazard format is used to assess factored demand, factored capacity, and the ratio of the factored demand to the factored capacity of the models with respect to different performance objectives. Finally, the vulnerability curves are obtained for the investigated bridges in terms of the loss ratio. The results revealed that decreasing the span length of the unreinforced arch bridges leads to the increase in the return period of exceeding various limit states and factored capacity and decrease in the displacement demand, the probability of failure, the factored demand, as well as the factored demand to factored capacity ratios, loss ratio, and seismic vulnerability. Finally, it is derived that the probability of the need for rehabilitation increases by an increase in the span length of the models.

Seismic Fragility Analysis of Ground Supported Horizontal Cylindrical Tank (수평원통형 저장탱크의 지진취약도 해석)

  • Chaulagain, Nabin Raj;Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.145-151
    • /
    • 2019
  • The fragility analyses for the partially filled horizontal cylindrical tank having a flexible wall were conducted to evaluate seismic performance. An equivalent simplified model with two lumped masses representing to impulsive and convective masses was used to represent the liquid storage system. This simplified model was validated by comparing its time history analysis results with the 3D FSI model results. The horizontal tank was analyzed under bi-directional excitations. Seismic fragility curves for the stability were developed in transverse and longitudinal directions. Fragility curves show that seismic damage for the horizontal storage system is more susceptible in the transverse direction.

Influence of time-varying attenuation effect of damage index on seismic fragility of bridge

  • Yan, Jialei;Liang, Yan;Zhao, Boyang;Qian, Weixin;Chen, Huai
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.287-301
    • /
    • 2020
  • Fragility as one of the most effective methods to evaluate seismic performance, which is greatly affected by damage index. Taking a multi span continuous rigid frame offshore bridge as an example. Based on fragility and reliability theory, considering coupling effect of time-varying durability damage of materials and time-varying attenuation effect of damage index to analyze seismic performance of offshore bridges. Results show that IDA curve considering time-varying damage index is obviously below that without considering; area enclosed by IDA of 1# pier and X-axis under No.1 earthquake considering this effect is 96% of that without considering. Area enclosed by damage index of 1# pier and X-axis under serious damage with considering time-varying damage index is 90% of that without considering in service period. Time-varying damage index has a greater impact on short pier when ground motion intensity is small, while it has a great impact on high pier when the intensity is large. The area enclosed by fragility of bridge system and X-axis under complete destruction considering time-varying damage index is 165% of that without considering when reach designed service life. Therefore, time-varying attenuation effect of damage index has a great impact on seismic performance of bridge in service period.

Seismic fragility analysis of base isolation reinforced concrete structure building considering performance - a case study for Indonesia

  • Faiz Sulthan;Matsutaro Seki
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.243-260
    • /
    • 2023
  • Indonesia has had seismic codes for earthquake-resistant structures designs since 1970 and has been updated five times to the latest in 2019. In updating the Indonesian seismic codes, seismic hazard maps for design also update, and there are changes to the Peak Ground Acceleration (PGA). Indonesian seismic design uses the concept of building performance levels consisting of Immediate occupancy (IO), Life Safety (LS), and Collapse Prevention (CP). Related to this performance level, cases still found that buildings were damaged more than their performance targets after the earthquake. Based on the above issues, this study aims to analyze the performance of base isolation design on existing target buildings and analyze the seismic fragility for a case study in Indonesia. The target building is a prototype design 8-story medium-rise residential building using the reinforced concrete moment frame structure. Seismic fragility analysis uses Incremental Dynamic Analysis (IDA) with Nonlinear Time History Analysis (NLTHA) and eleven selected ground motions based on soil classification, magnitude, fault distance, and earthquake source mechanism. The comparison result of IDA shows a trend of significant performance improvement, with the same performance level target and risk category, the base isolation structure can be used at 1.46-3.20 times higher PGA than the fixed base structure. Then the fragility analysis results show that the fixed base structure has a safety margin of 30% and a base isolation structure of 62.5% from the PGA design. This result is useful for assessing existing buildings or considering a new building's performance.

Effect of Near- and Far-Fault Earthquakes for Seismic Fragility Curves of PSC Box Girder Bridges (PSC 상자형교의 지진취약도 곡선에 대한 근거리 및 원거리 지진의 영향)

  • Jin, He-Shou;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.53-64
    • /
    • 2010
  • Seismic fragility curves of structures represent the probability of exceeding the prescribed structural damage state for a given various levels of ground motion intensity, such as peak ground acceleration (PGA). This means that seismic fragility curves are essential to the evaluation of structural seismic performance and assessments of risk. Most of existing studies have not considered the near- and far-fault earthquake effect on the seismic fragility curves. In order to evaluate the effect of near- and far-fault earthquakes, seismic fragility curves for PSC box girder bridges subjected to near- and far-fault earthquakes are calculated and compared. The seismic fragility curves are strongly dependent on the earthquake characteristics such as fault distance. This paper suggests that the effect of near- and far-fault earthquakes on seismic fragility curves of PSC box girder bridge structure should be considered.

Seismic Fragility Analysis for Probabilistic Seismic Performance Evaluation of Multi-Degree-of-Freedom Bridge Structures (확률론적 내진성능평가를 위한 다자유도 교량구조물의 지진취약도해석)

  • Jin, He-Shou;Song, Jong-Keol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.269-272
    • /
    • 2008
  • The seismic fragility curves of a structure represents the probability of exceeding the prescribed structural damage given various levels of ground motion intensityand the seismic fragility curve is essential to evaluation of structural performance and assessment of risk and loss of structures. The purpose of this paper is to develop seismic fragility functions for bridge structures in Koreaby reviewing those of advanced countries. Therefore, at first, we investigated development conditions of the seismic fragility functions. And the next highway bridges in Korea are classified into a number of categories and several typical bridges are selected to estimate seismic fragilities for using this analysis method in Korea. Finally, fragility curves for PSC Box girder bridge are estimated. The results show that the bridge classification and damage state play an important role in estimation of seismic damage and seismic fragility analysis for bridge structures.

  • PDF