• Title/Summary/Keyword: fracture volume

Search Result 443, Processing Time 0.02 seconds

Effectiveness of Computed Tomography for Blow-out Fracture

  • Rhee, Seung-Hyun;Kim, Tae-Seup;Song, Jae-Min;Shin, Sang-Hoon;Lee, Jae-Yeol
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.36 no.6
    • /
    • pp.273-279
    • /
    • 2014
  • Purpose: This study assessed the association between eye symptoms (enophthalmos or diplopia) and site of damage, volume, deviated inferior rectus muscle (IRM) and type of fracture with computed tomography (CT). The intent is to anticipate the prognosis of orbital trauma at initial diagnosis. Methods: Forty-five patients were diagnosed with fractures of the inferior wall of one orbit. Fracture area, volume of displaced tissue, deviated IRM, and type of fracture were evaluated from coronal CT by one investigator. The association of those variables with the occurrence of eye symptoms (diplopia and enophthalmos) was assessed. Results: Of 45 patients, 27 were symptom-free (Group A) and 18 had symptoms (Group B) of enophthalmos and/or diplopia. In Group B, 12 had diplopia, one was enophthalmos, and five had both. By CT measurement, group A mean area was $192.6mm^2$ and the mean volume was $673.2mm^3$. Group B area was $316.2mm^2$ and volume was $1,710.6mm^3$. The volume was more influential on symptom occurrence. Each patient was categorized into four grades depending on the location of IRM. Symptom occurrence and higher grade were associated. Twenty-six patients had trap-door fracture (one side, attached to the fracture), and 19 had punched-out fracture (both sides detached). The punched-out fracture was more strongly associated with symptoms and had statistically significantly higher area and volume. Conclusion: In orbital trauma, measurement of fracture area and volume, evaluation of the deviated IRM and classification of the fracture type by coronal CT can effectively predict prognosis and surgical indication.

Perioperative Orbital Volume Change in Blowout Fracture Correction through Endoscopic Transnasal Approach (안와파열골절의 비강내 내시경적 접근을 통한 교정에서 수술 전후 안와 용적 변화)

  • Lee, Jae Woo;Nam, Su Bong;Choi, Soo Jong;Kang, Cheol Uk;Bae, Yong Chan
    • Archives of Plastic Surgery
    • /
    • v.36 no.5
    • /
    • pp.617-622
    • /
    • 2009
  • Purpose: Endoscopic transnasal correction of the blowout fractures has many advantages over other techniques. But after removal of packing material, there were some patients with recurrence of preoperative symptoms. Authors tried to make a quantitative anterograde analysis of orbital volume change over whole perioperative period which might be related with recurrence of preoperative symptoms. Methods: 10 patients with pure medial wall fracture(Group I) and 10 patients with medial wall fracture combined with fracture of orbital floor(Group II) were selected to evaluate the final orbital volume change, who took 3 CT scans, pre-, postoperative and 4 months after packing removal. By multiplying cross - section area of orbit in coronal view with section thickness, orbital volume were calculated. Then, mean orbital volume increment after trauma, mean orbital volume decrement after endoscopic correction and volume increment after packing removal were found out. And we tried to find correlations between type of fracture, initial correction rate and final correction rate. Results: The mean orbital volume increment of the fractured orbits were 7.23% in group I and 13.69% in group II. After endoscopic surgery, mean orbital volume decrement were 11.0% in group I and 12.46% in group II. Mean volume increment after packing removal showed 3.10% in group I and 6.50% in group II. The initial correction rate(%) showed linear correlation with final correction rate(%) after packing removal. And there were negative linear correlation between increment percentage of orbital volume by fracture and final correction rate(%). Conclusion: Orbital volume was proved to be increasing after removal of packing or foley catheter and it was dependent upon type of fracture. Overcorrection should be done to improve the final result of orbital blowout fracture especially when there are severe fracture is present.

Fractal analysis on fracture toughness of particulate composites (입자강화 복합재료의 파괴인성에 관한 프랙탈 해석)

  • 김엄기;남승훈;고성위
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.84-91
    • /
    • 1996
  • A fractal analysis on fracture surface of aluminium-particulate SiC composites was attempted. As the volume fraction of SiC in composites increases, the fractal dimension tends to increase. However, no correlation between the fractal dimension and the fracture toughness in terms of critical energy release rate was observed. Since the fractal dimension represents the roughness of fracture surface, the fracture toughness would be a function of not only fracture surface roughness but also additional parameters. Thus the applicability of fractal analysis to the estimation of fracture toughness must depend on the proper choice and interpretation of additioal paramerters. In this paper, the size of characteristic strctural unit for fracture was considered as an additional parameter. As a result, the size appeared to be a function of only volume fraction of SiC. Finally, a master curve for fracture toughness of aluminium-particulate SiC composites was proposed as a function of fractal dimension and volume fraction of SiC.

  • PDF

Effect of fiber and aggregate size on mode-I fracture parameters of high strength concrete

  • Kumar, Ch.Naga Satish;Krishna, P.V.V.S.S.R.;Kumar, D.Rohini
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.613-624
    • /
    • 2017
  • In this paper, an experimental investigation was carried out to study the effect of volume fraction of fiber and maximum aggregate size on mode-I fracture parameters of high strength concrete. Total of 108 beams were tested on loading frame with three point loading, the variables in the high strength concrete beams are aggregate size (20 mm, 16 mm and 10 mm) and volume fraction of fibers (0%, 0.5%, 1% and 1.5%). The fracture parameters like fracture energy, brittleness number and fracture process zone were analyzed by the size effect method (SEM). It was found that fracture energy (Gf) increases with increasing the Maximum aggregate size and also increasing the volume of fibers, brittleness number (${\beta}$) decreases and fracture process zone (CF) increases.

An Experimental Study on the Engineering Properties of HPFRCC According to Kinds, Shapes and Volume Fraction of Fibers (섬유의 종류, 형상 및 치환율에 따른 HPFRCC의 공학적 특성에 관한 실험적 연구)

  • 김영덕;조봉석;김재환;김규용;최경렬;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.59-62
    • /
    • 2003
  • Kinds, shapes and fraction ratios of fibers have influence on properties of HPFRCC(High-Performance Fiver Reinforced Cementitious Concrete ) like bending strength, strain capacity and fracture toughness. For example, hydrophilic fibers have different chemical bond strength from hydrophobic fibers, fiber shapes influence on fiber pull-out and rupture, and fiber volume fraction influence on bending strength. In this study, to estimate influences of kinds, shapes and fraction ratios of fibers, we make HFRCC with 3 kind of fiber in various volume fraction of fiber and compare cracking, bending strength and fracture toughness. As the results, bending strength of HPFRCC was increased as fiber volume fraction was Increase and fiber tensile strength was increase, and strain capacity and fracture toughness of HFRCC was higher in fiber pull-out fracture than in fiber rupture fracture. And HFRCC showing pseudo strain hardening has higher fiber reinforce efficiency than others.

  • PDF

Reinforcing Characteristics on Volume and Shape of Ductile Short-Fiber in Brittle Matrix Composites (취성기지 복합재료에서 연성 단섬유의 함유량 및 형상에 관한 보강특성)

  • Sin, Ik-Jae;Lee, Dong-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.250-258
    • /
    • 2000
  • The reinforcing effects of ductile short-fiber reinforced brittle matrix composites are studied by, measuring flexural strength, fracture toughness and impact energy as functions of fiber volume fraction and length. The parameters of fracture mechanics, K and J are applied to assess fracture toughness and bridging stress. It is found that fracture toughness is greatly, influenced by the bridging stress ill which fiber pull-out is occur. For the reinforcing effects as functions of fiber volume fraction($V_f$ = 1, 2, 3 %) and length(L = 3, 6. 10cm), the flexural strength is maximum at $V_f$ = 1% and both fracture toughness.

Comparative analysis on intaglio surface trueness, wear volume loss of antagonist, and fracture resistance of full-contour monolithic zirconia crown for single-visit dentistry under simulated mastication

  • Kim, Yong-Kyu;Yoon, Hyung-In;Kim, Dae-Joon;Han, Jung-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.3
    • /
    • pp.173-181
    • /
    • 2022
  • PURPOSE. This analysis aimed to evaluate the intaglio surface trueness, antagonist's wear volume loss, and fracture resistance of full-contour crowns of (Y, Nb)-stabilized fully-sintered zirconia (FSZ), 4 mol% or 5 mol% yttria-stabilized partially sintered zirconia (4YZ or 5YZ) with high-speed sintering. MATERIALS AND METHODS. A total of 42 zirconia crowns were separated into three groups: FSZ, 4YZ, and 5YZ (n = 14). The intaglio surface trueness of the crowns was evaluated at the inner surface, occlusal, margin, and axial areas and reported as root-mean-square, positive and negative average deviation. Half of the specimens were aged for 120,000 cycles in the chewing simulator, and the wear volume loss of antagonist was measured. Before and after chewing, the fracture load was measured for each group. The trueness values were analyzed with Welch's ANOVA, and the wear volume loss with the Kruskal-Wallis tests. Effect of the zirconia type and aging on fracture resistance of crowns was tested using two-way ANOVA. RESULTS. The intaglio surface trueness measured at four different areas of the crown was less than 50 ㎛, regardless of the type of zirconia. No significant P in wear volume loss of antagonists were detected among the groups (P > .05). Both the type of zirconia and aging showed statistically significant effects on fracture resistance (P < .05). CONCLUSION. The full-contour crowns of FSZ as well as 4YZ or 5YZ with high-speed sintering were clinically acceptable, in terms of intaglio surface trueness, antagonist's wear volume loss, and fracture resistance after simulated mastication.

Tensile Fracture Behavior of Glass Fiber/Polypropylene Composites for Various Fiber Volume Fraction (섬유함유율에 따른 GF/PP 복합재료의 인장파괴거동)

  • Koh, Sung-Wi;Um, Yoon-Sung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.2
    • /
    • pp.161-165
    • /
    • 2004
  • The main goal of this work is to study the effect of glass fiber volume fraction on the result of tensile test with respect to glass fiber/polypropylene(GF/PP) composites. The tensile test and failure mechanisms of GF/PP composites were investigated in the fiber volume fraction range from 10% to 30%. The tensile strength and the fracture strength increased with the increasing of the fiber volume fraction in the tested range. Fiber pull-out and debonding of this composites increased with the fiber volume fraction in thc tested range. The major failure mechanisms were classified into the debonding, the fiber pull out, the delamination and the matrix deformation.

Quantitative Analysis of the Orbital Volume Change in Isolated Zygoma Fracture (관골 단독 골절에서 안구 용적 변화의 정량적 분석)

  • Jung, Han-Ju;Kang, Seok-Joo;Kim, Jin-Woo;Kim, Young-Hwan;Sun, Hook
    • Archives of Plastic Surgery
    • /
    • v.38 no.6
    • /
    • pp.783-790
    • /
    • 2011
  • Purpose: The zygoma (Zygomaticomaxillary) complexes make up a large portion of the orbital floor and lateral orbital walls. Zygoma fracture frequently causes the posteromedial displacement of bone fragments, and the collapse or overlapping of internal orbital walls. This process consequently can lead to the orbital volume change. The reduction of zygoma in an anterolateral direction may influence on the potential bone defect area of the internal orbital walls. Thus we performed the quantitative analysis of orbital volume change in zygoma fracture before and after operation. Methods: We conducted a retrospective study of preoperative and postoperative three-dimensional computed tomography scans in 39 patients with zygoma fractures who had not carried out orbital wall reconstruction. Orbital volume measurement was obtained through Aquarius Ver. 4.3.6 program and we compared the orbital volume change of injured orbit with that of the normal contralateral orbit. Results: The average orbital volume of normal orbit was 19.68 $cm^3$. Before the operation, the average orbital volume of injured orbit was 18.42 $cm^3$. The difference of the orbital volume between the injured orbit and the normal orbit was 1.18 $cm^3$ (6.01%) on average. After operation, the average orbital volume of injured orbit was 20.81 $cm^3$. The difference of the orbital volume between the injured orbit and the normal orbit was 1.17 $cm^3$ (5.92%) on average. Conclusion: There are considerable volume changes in zygoma fracture which did not accompany internal orbital wall fracture before and after operation. Our study reflects the change of bony frame, also that of all parts of the orbital wall, in addition to the bony defect area of orbital floor, in an isolated zygoma fracture so that it evaluates orbital volume change more accurately. Thus, the measurement of orbital volume in isolated zygoma fractures helps predict the degree of enophthalmos and decide a surgical plan.

ACOUSTIC EMISSION ANALYSIS FOR FRACTURE CHARACTERISTICS OF DENTAL POSTERIOR COMPOSITES (구치부 수복용 복합레진의 파괴특성에 관한 Acoustic Emission 연구)

  • Park, Jin-Hoon;Kim, Kyo-Han
    • Restorative Dentistry and Endodontics
    • /
    • v.17 no.1
    • /
    • pp.153-165
    • /
    • 1992
  • Dental composite resin is a kind of the particle - reinforced composite material, and is widely used in recent dental restoration of anterior and posterior tooth region. The purpose of this study was to investigate the fracture behaviour according to volume fractions and external findings of the filler particles for better interpretation of the fracture characteristics of posterior dental composite resins by analytic method of fracture mechanics. The plane strain fracture toughness($K_{IC}$) and Acoustic Emission were determined with three - point bending test using the single edge notch specimen according to the ASTM - E399, and its analyzed data was compared with filler volume fractions derived from the standard ashing test and scanning electron fractographs of each specimen including the unfilled experimental resin as a control. The results were that the value of fracture toughness of the composite resin material was in the range from 0.85 MPa$\sqrt{m}$ to 1.60 MPa$\sqrt{m}$ and was higher than the value of the unfilled experimental resin, and the fracture behaviours dervied from Acoustic Emission analysis show prominent differences according to the volume fraction and the size of filler particles used in each composite resin. The degree of resistance against crack propagation seems to be increase and the fractographs demonstrate the high degree of surface roughness and irregularity according with the increase of fracture toughness value.

  • PDF