• Title/Summary/Keyword: fracture repair

Search Result 254, Processing Time 0.019 seconds

Analysis of Lower Extremity Injury Mechanism Centered on Frontal Collision in Occupant Motor Vehicle Crashes (정면충돌 시 차량 탑승자의 하지 손상기전에 대한 분석)

  • Lee, Hee Young;Lee, Jung Hun;Jeon, Hyeok Jin;Kim, Ho Jung;Kim, Sang Chul;Youn, Young Han;Lee, Kang Hyun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.4
    • /
    • pp.7-12
    • /
    • 2018
  • Injury mechanisms of lower extremity injuries in motor vehicle accidents are focused on fractures, sprains, and contusions. The purpose of this study is to evaluate the analysis of lower extremity injury mechanism in occupant motor vehicle accident by using Hospital Information System (HIS) and reconstruction program, based on the materials related to motor vehicle accidents. Among patients who visited the emergency department of Wonju Severance Christian Hospital due to motor vehicle accidents from August 2012 to February 2014, we collected data on patients with agreement for taking the damaged vehicle's photos. After obtaining the verbal consent from the patient, we asked about the cause of the accident, information on vehicle involved in the accident, and the location of car repair shop. The photos of the damaged vehicle were taken on the basis of front, rear, left side and right side. Damage to the vehicle was presented using the CDC code by analytical study of photo-images of the damaged vehicle, and a trauma score was used for medical examination of the severity of the patient's injury. Among the 1,699 patients due to motor vehicle crashes, 88 (5.2%) received a diagnosis of lower extremity fracture and 141 (8.3%) were the severe who had ISS over 15. Nevertheless during 19 months for research, it was difficult to build up in-depth database about motor vehicle crashes. It has a limitation on collecting data because not only the system for constructing database about motor vehicle crash is not organized but also the process for demanding materials is not available due to prevention of personal information. For accurate analysis of the relationship between occupant injury and vehicle damage in motor vehicle crashes, build-up of an in-depth database through carrying out various policies for motor vehicle crashes is necessary for sure.

Performance assessment of polymeric filler and composite sleeve technique for corrosion damage on large-diameter water pipes (대구경 상수도관 부식 손상부의 고분자 필러와 복합슬리브 성능 평가)

  • Ho-Min Lee;Jeong-Soo Park;Jeong-Joo Park;Cheol-Ho Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.4
    • /
    • pp.203-214
    • /
    • 2023
  • In this study, the physical properties and fracture characteristics according to the tensile load are evaluated on the materials of the polymeric filler and carbon fiber-based composite sleeve technique. The polymeric filler and the composite sleeve technique are applied to areas where the pipe body thickness is reduced due to corrosion in large-diameter water pipes. First, the tensile strength of the polymeric filler was 161.48~240.43 kgf/cm2, and the tensile strength of the polyurea polymeric filler was relatively higher than that of the epoxy. However, the tensile strength of the polymeric filler is relatively very low compared to ductile cast iron pipes(4,300 kgf/cm2<) or steel pipes(4,100 kgf/cm2). Second, the tensile strength of glass fiber, which is mainly used in composite sleeves, is 3,887.0 kgf/cm2, and that of carbon fiber is up to 5,922.5 kgf/cm2. The tensile strengths of glass and carbon fiber are higher than ductile cast iron pipe or steel pipe. Third, when reinforcing the hemispherical simulated corrosion shape of the ductile cast iron pipe and the steel pipe with a polymeric filler, there was an effect of increasing the ultimate tensile load by 1.04 to 1.06 times, but the ultimate load was 37.7 to 53.7% compared to the ductile cast iron or steel specimen without corrosion damage. It was found that the effect on the reinforcement of the corrosion damaged part was insignificant. Fourth, the composite sleeve using carbon fiber showed an ultimate load of 1.10(0.61T, 1,821.0 kgf) and 1.02(0.60T, 2,290.7 kgf) times higher than the ductile cast iron pipe(1,657.83 kgf) and steel pipe(2,236.8 kgf), respectively. When using a composite sleeve such as fiber, the corrosion damage part of large-diameter water pipes can be reinforced with same level as the original pipe, and the supply stability can be secured through accident prevention.

CORRELATION BETWEEN VASCULAR ENDOTHELIAL GRWOTH FACTOR SIGNALING AND MINERALIZATION DURING OSTEOBLASTIC DIFFERENTIATION OF CULTURED HUMAN PERIOSTEAL-DERIVED CELLS (배양된 인간 골막기원세포의 조골세포 분화과정에서 골기질 형성정도와 혈관내피세포성장인자 신호와의 상관관계)

  • Park, Bong-Wook;Byun, June-Ho;Ryu, Young-Mo;Hah, Young-Sool;Kim, Deok-Ryong;Cho, Yeong-Cheol;Sung, Iel-Yong;Kim, Jong-Ryoul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.3
    • /
    • pp.197-205
    • /
    • 2007
  • Angiogenesis is a essential part for bone formation and bone fracture healing. Vascular endothelial growth factor (VEGF), one of the most important molecules among many angiogenic factors, is a specific mitogen for vascular endothelial cells. VEGF-mediated angiogenesis is required for bone formation and repair. However, the effect of VEGF on osteoblastic cells during osteogenesis is still controversial. In recent days, substantial progress have been made toward developing tissue-engineered alternatives to autologous bone grafting for maxillofacial bony defects. Periosteum has received considerable interest as a better source of adult stem cells. Periosteum has the advantage of easy harvest and contains various cell types and progenitor cells that are able to differentiate into a several mesenchymal lineages, including bone. Several studies have reported the bone formation potential of periosteal cells, however, the correlation between VEGF signaling and cultured human periosteal cell-derived osteogenesis has not been fully investigated yet. The purpose of this study was to examine the correlation between VEGF signaling and cultured human periosteal-derived cells osteogenesis. Periosteal tissues of $5\;{\times}\;20\;mm$ were obtained from mandible during surgical extraction of lower impacted third molar from 3 patients. Periosteal-derived cells were introduced into the cell culture and were subcultured once they reached confluence. After passage 3, the periosteal-derived cells were further cultured for 42 days in an osteogenic inductive culture medium containing dexamethasone, ascorbic acid, and ${\beta}-glycerophosphate$. We evaluated the alkaline phosphatase (ALP) activity, the expression of Runx2 and VEGF, alizarin red S staining, and the quantification of osteocalcin and VEGF secretion in the periosteal-derived cells. The ALP activity increased rapidly up to day 14, followed by decrease in activity to day 35. Runx2 was expressed strongly at day 7, followed by decreased expression at day 14, and its expression was not observed thereafter. Both VEGF 165 and VEGF 121 were expressed strongly at day 35 and 42 of culture, particularly during the later stages of differentiation. Alizarin red S-positive nodules were first observed on day 14 and then increased in number during the entire culture period. Osteocalcin and VEGF were first detected in the culture medium on day 14, and their levels increased thereafter in a time-dependent manner. These results suggest that VEGF secretion from cultured human periosteal-derived cells increases along with mineralization process of the extracellular matrix. The level of VEGF secretion from periosteal-derived cells might depend on the extent of osteoblastic differentiation.

A Study on the Guidelines on the Insertion of Metal Stiffeners in the Restoration of Stone Cultural Heritages (석조문화재 복원을 위한 금속보강재 매입방법 표준화 연구)

  • Lee, Dong-sik;Kim, Hyun-yong;Kim, Sa-dug;Hong, Seong-geol
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.3
    • /
    • pp.212-228
    • /
    • 2013
  • Stone cultural heritages are repaired by the use of metal stiffeners. The problem is that this type of repair has been based on the experience of workers without specific guidelines and has caused various problems. This is to suggest the structural reinforcement and behavioral characteristics of metal rods to minimize the secondary damage of materials and have the specimens tested and verified to establish the guidelines on how to insert metal stiffeners. When only epoxy resin is applied to the cut surface, only 70% of the properties of the parent material are regenerated and it is required to structurally reinforce the metal stiffener for the remaining 30%. The metal rod is under the structural behavior after the brittle failure of stone material and the structural behavior does not occur when the metal stiffener is below 0.251%. When it accounts for over 0.5%, it achieves structural reinforcement, but causes secondary damage of parent materials. The appropriate ratio of metal stiffener for the stone material with the strength of $1,500kgf/cm^2$, therefore, should be between 0.283% and 0.377% of the cross section of attached surface to achieve reversible fracture and ductility behavior. In addition, it is more effective to position the stiffeners at close intervals to achieve the peak stress of metal rod against bending load and inserting the stiffener into the upper secions is not structurally supportive, but would rather cause damage of the parent material. Thus, most stiffeners should be inserted into the lower part and some into the central part to work as a stable tensile material under the load stress. The dispersion effect of metal rods was influenced by the area of reinforcing rods and unrelated to their diameter. However, it ensures stability under the load stress to increase the number of stiffeners considering the cross section adhered when working on large-scale structures. The development length is engineered based upon the diameter of stiffener using the following formula: $l_d=\frac{a_tf_y}{u{\Sigma}_0}$. Also, helically-threaded reinforcing rods should be used to perform the behaviors as a structural material.