• Title/Summary/Keyword: fracture potential

Search Result 357, Processing Time 0.029 seconds

Construction of the P-T Limit Curve for the Nuclear Reactor Pressure Vessel Using Influence Coefficient Methods : Cooldown Curve (영향계수를 이용한 원자로 압력용기의 운전제한곡선 작성 : 냉각곡선)

  • Jang, Chang-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.505-513
    • /
    • 2002
  • During heatup and cooldown of pressurized water reactor, thermal stress was generated in the reactor pressure vessel (RPV) because of the temperature gradient. To prevent potential failure of RPV, pressure was required to be maintained below the P-T limit curves. In this paper, several methods for constructing the P-T limit curves including the ASME Sec. XI, App. G method were explained and the results were compared. Then, the effects of the various parameters such as flaw size, flaw orientation, cooldown rate, existence of chad, and reference fracture toughness, were evaluated. It was found that the current ASME Sec. XI App. G method resulted in the most conservative P-T limit curve. As the more accurate fracture mechanics analysis results were used, some of the conservatism can be removed. Among the parameters analysed, reference flaw orientation and reference fracture toughness curve had the greatest effect on the resulting P-T limit curves.

Applicability of Existing Fracture Initiation Models to Modern Line Pipe Steels

  • Shim, Do Jun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.2
    • /
    • pp.1-24
    • /
    • 2016
  • The original fracture criteria developed by Maxey/Kiefner for axial through-wall and surface-cracked pipes have worked well for many industries for a large variety of relatively low strength and toughness materials. However, newer line pipe steels have some unusual characteristics that differ from these older materials. One example is a test data that has demonstrated that X80 line-pipe with an axial through-wall-crack can fail at pressures about 30 percent lower than predicted with commonly used analysis methods for older steels. Thus, it is essential to review the currently available models and investigate the applicability of these models to newer high-strength line pipe materials. In this paper, the available models for predicting the failure behavior of axial-cracked pipes (through-wall-cracked and external surface-cracked pipes) were reviewed. Furthermore, the applicability of these models to high-strength steel pipes was investigated by analyzing limited full-scale pipe fracture initiation test results. Based on the analyzed results, the shortcomings of the available models were identified. For both through-wall and surface cracks, the major shortcomings were related to the characterization of the material toughness, which generally leads to non-conservative predictions in the J-T analyses. The findings in this paper may be limited to the test data that were consider for this study. The requisite characteristics of a potential model were also identified in the present paper.

Measures for Preventing Pressure Fracture of Fire and Flue Tube Boiler (노통연관식 보일러의 압궤사고 방지대책)

  • Lee Keun-Oh
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.14-19
    • /
    • 2004
  • Boiler is a hazardous equipment to have potential explosion ail the time. And not only it has malfunction at explosion. it lead to people death but also secondary accident such as explosion and fire. Therefore, this equipment should not be broken for keeping its own function. And also, high level of safety should be kept in the process of the use not to be malfunctioned. A large scale of accident due to boiler explosion can be preventive in advance. Boiler fracture is occurred by instant expansion (approximately 1700 time) from quick evaporation of rater in boiler, due to pressure decrease in boiler Emitting energy from it is tremendous and it is so dangerous because of its high temperature. Secondary explosion such as fire is also a main hazard occurring at fuel supply place. If any devices with high pressure is broken, then not only boiler vessel but also components of it are spread with high speed, causing secondary accident. This study is to analyze integrally accident cause of fire and flue tube boiler to have occurred pressure fracture actually, to show countermeasures to prevent accident loss from the fire and flue tube boiler.

Guide wire fracture during percutaneous coronary intervention (경피적 관상동맥 확장 성형술 도중 우관상동맥 뒤가쪽가지에서 발생한 유도철사 부러짐)

  • Kim, Hak Ro;Yim, Tae Hoon;Kim, Byung Chul;Lee, Ho Jun;Oh, Hong Geun;Ju, Hyun Sik;Kim, Tae Jin;Kim, Young Bok
    • Journal of Yeungnam Medical Science
    • /
    • v.33 no.1
    • /
    • pp.52-55
    • /
    • 2016
  • Guide wire fracture during percutaneous coronary intervention (PCI) is rare. It can cause fatal complications such as thrombus formation, embolization, and perforation. Guide wire fracture could occur during intervention for severely calcified stenotic lesions, and rarely from distal small branches of stenotic lesions. There are several methods for its management depending on the material character, position, length of the remnant, and the patient's condition. If percutaneous retrieval was not achieved, the surgical procedure should be considered for prevention of potential risks, although the remnant guide wire does not usually cause complications. We experienced a patient with a guide wire fracture during PCI, and managed to prevent its complications through surgical removal of the remnant wire. We report this case here.

Corrosion Fatigue Characteristics of CF8M and CF8A on the PWR Condition (PWR환경에서 CF8M, CF8A 배관재의 부식피로특성 연구)

  • Jeong, Ill-Seok;Lee, Yong-Sung;Kim, Sang-Jai;Song, Taek-Ho;Cho, Sun-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1062-1067
    • /
    • 2003
  • In this study, corrosion fatigue characteristics of CF8M and CF8A steel were investigated on the simulated PWR condition(Temp.:$316^{\circ}C$, Pres.: 15:MPa). To make the simulated PWR condition. the special test machine consisted of INSTRON, Autoclave, LOOP and Measurement system was developed. As ${\Delta}K$ is ranged from 11 to $20MPa{\sqrt{m}}$, Crack growth rate of PWR condition is faster than air condition. Above $20MPa{\sqrt{m}}$, the crack growth rate of PWR and air condition is similar. Corrosion fatigue characteristics regardless of the ferrite contents($10{\sim}25wt.%$) is not different. After the test, the fracture surface of specimens was examined. It was difficult to verify the fracture modes such as striation, intergranular crack and cleavage and so on. As the ferrite content of CF8M is increased, the more particles covered fracture surface were peeled.

  • PDF

Fracture characterization with high frequency single-hole EM survey

  • Seo, Soon-Jee;Song, Yoon-Ho;Kim, Hee-Joon;Lee, Ki-Ha;Suh, Jung-Hee
    • Proceedings of the KSEEG Conference
    • /
    • 1999.04a
    • /
    • pp.90-93
    • /
    • 1999
  • We present a high frequency electromagnetic (EM) inversion scheme for detecting and characterizing a fracture using single-hole data. At high frequencies, say above tens of mega-hertz, since displacement currents cannot be ignored, electrical permittivity as well as electrical conductivity is to be considered together for analyzing the EM scattering data. In this paper, we have developed a three-step inversion scheme to map the fracture and to evaluate its electrical conductivity and permittivity. We performed EM profiling along the z-axis using three-component receivers for each source. The model was excited by a vertical magnetic dipole and the resistant magnetic fields were inverted using the non-linear least-squares method. Background resistivity and permittivity were easily obtained using vertical magnetic fields below 1 MHz and above 10 MHz, respectively. Both the vertical and dipping sheets were successfully mapped using the phase difference between 40 and 41 MHz. The electrical property of the sheet was well resolved using the information obtained in the previous two steps and secondary magnetic fields. Our study shows the potential of imaging the fracture in single-hole survey environment using the high frequency EM method.

  • PDF

Arthroscopic Assessment of Potential Intra-articular Ankle Injury in Treatment of Ankle Fracture (족관절 골절의 치료에 있어 잠재적 관절 내 손상의 관절경적 평가)

  • Kim, Jung-Han;Gwak, Heui-Chul;Lee, Hyeong-Joo
    • Journal of Korean Foot and Ankle Society
    • /
    • v.19 no.4
    • /
    • pp.151-155
    • /
    • 2015
  • Purpose: The purpose of this study was to analyze the frequency and patterns of intra-articular lesions detected during ankle fracture surgery using ankle arthroscopy. Materials and Methods: Thirty patients (31 ankles) who underwent open reduction and internal fixation combined with ankle arthroscopy for acute ankle fracture at Inje University Busan Paik Hospital from June 2011 to September 2013 were evaluated. The ankle fractures were classified according to the AO/OTA (AO Foundation and Orthopaedic Trauma Association) classification and the intraarticular injuries were identified by ankle arthroscopy. Osteochondral lesions of the talus were divided into nine subtypes based on their locations, and the ligament injuries were classified according to avulsion fracture and rupture. Results: Using arthroscopy, abnormality in the distal tibiofibular ligament was found in 21 cases and osteochondral lesions and defects of the talus larger than 5 mm were detected in 26 cases. Among ligament injuries, anterior inferior tibio-fibular ligament injury was found in 14 cases, posterior inferior tibio-fibular ligament injury was found in two cases, deep deltoid ligament injury was found in three cases, and deep transverse tibio-fibular ligament injury was found in five cases. The locations of the osteochondral lesions were on the antero-lateral, antero-medial, centro-medial, centro-central, centro-lateral, and postero-lateral talus in 11, one, two, one, two, and nine cases, respectively. Conclusion: With early diagnosis and treatment arthroscopy performed at the time of intra-articular fracture surgery is expected to result in a good outcome.

ESTIMATION OF DUCTILE FRACTURE BEHAVIOR INCORPORATING MATERIAL ANISOTROPY

  • Choi, Shin-Beom;Lee, Dock-Jin;Jeong, Jae-Uk;Chang, Yoon-Suk;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.791-798
    • /
    • 2012
  • Since standardized fracture test specimens cannot be easily extracted from in-service components, several alternative fracture toughness test methods have been proposed to characterize the deformation and fracture resistance of materials. One of the more promising alternatives is the local approach employing the SP(Small Punch) testing technique. However, this process has several limitations such as a lack of anisotropic yield potential and tediousness in the damage parameter calibration process. The present paper investigates estimation of ductile fracture resistance(J-R) curve by FE(Finite Element) analyses using an anisotropic damage model and enhanced calibration procedure. In this context, specific tensile tests to quantify plastic strain ratios were carried out and SP test data were obtained from the previous research. Also, damage parameters constituting the Gurson-Tvergaard-Needleman model in conjunction with Hill's 48 yield criterion were calibrated for a typical nuclear reactor material through a genetic algorithm. Finally, the J-R curve of a standard compact tension specimen was predicted by further detailed FE analyses employing the calibrated damage parameters. It showed a lower fracture resistance of the specimen material than that based on the isotropic yield criterion. Therefore, a more realistic J-R curve of a reactor material can be obtained effectively from the proposed methodology by taking into account a reduced load-carrying capacity due to anisotropy.

A Study on the Corrosion Rehavior and Mechanical Property by SSRTTest of Welding Part of RE36 Steel for Marine Structure (해양구조물 RE36강의 용접부 부식거동 및 SSRT법에 의한 기계적 특성에 관한 연구)

  • 김종성;김진경;김종호;이명훈;김영식;문경만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.460-469
    • /
    • 2000
  • A study on the corrosion behavior of RE36 steel for marine structure was investigated with parameters such as micro-Vickers hardness, corrosion potential and corrosion current density measurement of weld metal(WM), base metal (BM) and heat affected zone(HAZ), Al anode generating current and Al anode weight loss quantity in case of cathodic protection. And we carried out slow strain rate test(SSRT) in order to research mechanical properties such as stress at maximum load, percent strain, time to fracture and strain to failure ratio etc and to find out limiting cathodic polarization potential for hydrogen embrittlement with applied cathodic polarization potential. Hardness of HAZ part was the highest among those three parts and also galvanic corrosion susceptibility was the highest in HAZ part among those three parts due to the lowest corrosion potential than other parts. However corrosion current density was the highest in WM part among those three parts. And the optimum cathodic polarization potential showing the best mechanical properties obtained by SSRT method with applied constant cathodic potential was from - 770mV to - 875mV(SCE). However it is suggested that limiting cathodic polarization potential indicating hydrogen embrittlement on the mechanical properties was under - 900mV(SCE).

  • PDF

Analytical Study of Net Section Fracture in Special Concentrically Braced Frames (중심가새골조의 순단면 파단에 관한 해석적 연구)

  • Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Failure modes result in fracture or tearing, which may cause deterioration of resistance and reduction of inelastic deformation capacity. The potential failure modes for Special Concentrically Braced Frames (SCBFs) include fracture or tearing of the brace, net section fracture of the brace or gusset plate, fracture of the gusset plate welds, shear fracture of the bolts, block shear, excessive bolt bearing deformation, and buckling of the gusset plate. HSS tubular braces are commonly used in SCBFs, and net section fracture of the tubular brace may also occur through the brace net section at the end of the slot cut into the tube to slip over the gusset plate. This failure mode is categorized as a tension failure mode, and may cause dramatic loss of resistance and brittle behavior. Net section reinforcement is required according to AISC design specifications (AISC 2001). In this paper, the need to reinforce the net section area was discussed. Initially, the results of the net section fracture tests done by the University of California in Berkeley were presented with the modeling of these tests using FE models. To investigate the possibility of net section fracture in an actual frame, the slot end hole model was adapted to the frame FE model, and alternate near-fault histories were applied with tension-dominated cycles, since previous analyses showed that loading history was the most critical factor in net section fracture. The need for this reinforcement (cover plate) and the tension-dominated near-fault history were investigated.