• Title/Summary/Keyword: fracture energy rate

Search Result 313, Processing Time 0.025 seconds

Rheological Models for Simulations of Concrete Under High-Speed Load (콘크리트 재료의 동적 물성 변화를 모사하기 위한 유변학적(Rheological)모델 개발 및 평가)

  • Hwang, Young Kwang;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.769-777
    • /
    • 2015
  • In this study, the rheological models were introduced and developed to reflect rate dependent tensile behaviour of concrete. In general, mechanical properties(e.g. strength, elasticity, and fracture energy) of concrete are increased under high loading rates. The strength of concrete shows high rate dependency among its mechanical properties, and the tensile strength has higher rate dependency than the compressional strength. To simulate the rate dependency of concrete, original spring set of RBSN(Rigid-Body- Spring-Network) model was adjusted with viscous and friction units(e.g. dashpot and Coulomb friction component). Three types of models( 1) visco-elastic, 2) visco-plastic, and 3) visco-elasto- plastic damage models) are considered, and the constitutive relationships for the models are derived. For validation purpose, direct tensile test were simulated, and characteristics of the three different rheological models were compared with experimental stress-strain responses. Simulation result of the developed visco-elasto-plastic damage(VEPD) model demonstrated well describing and fitting with experimental results.

Wear Behavior of Al/SiC Composites Fabricated by Thermal Spray Process (2) - Effect of Applied Load on Wear Behavior - (용사법에 의해 제조된 Al/SiC 복합재료의 마모거동 (2) - 작용하중의 영향 -)

  • Lee, Kwang Jin;Kim, Kyun Tak;Kim, Yeong Sik
    • Tribology and Lubricants
    • /
    • v.29 no.5
    • /
    • pp.298-303
    • /
    • 2013
  • In this work, the effect of applied load on the wear behavior of Al/SiC composites was studied. Al/SiC composites were fabricated following the thermal spray process. Dry sliding wear tests were performed on these composites under four different applied loads, i.e., 5, 10, 15, and 20 N. The wear behaviors of the composites under these applied loads were investigated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Under applied loads of up to 15 N, the wear rates of Al/SiC composites decreased with an increase in the applied load because of the formation of an adhesion layer on the worn surface. However in the case of an applied load of 20 N, the wear rate was significantly high because the formation and fracture of the adhesion layer were repeated continuously. These results show that the wear behaviors of the tested composites are significantly influenced owing to the applied loads.

High Strain Rate Deformation Behavior of 5083 Aluminum Alloy Prepared via Equal Channel Angular Extrusion (ECAE 전단 가공된 5083 알루미늄 합금의 고변형률 변형거동)

  • Kim, Yang Gon;Ko, Young Gun;Shin, Dong Hyuk;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.397-405
    • /
    • 2009
  • The high strain rate deformation behavior of ultra-fine grained 5083 aluminum alloys prepared via equal channel angular (ECA) extrusion was investigated in this study. The microstructure of ECA extruded specimens consisted of ultra-fine grains, and contained a considerable amount of second phase particles, which were fragmented and distributed homogeneously in the matrix. According to the dynamic torsion test results, the maximum shear stress and fracture shear strain of the route A (no rotation) specimen were lower than those of route C ($180^{\circ}$ rotation) specimen since that adiabatic shear bands of $100{\mu}m$ in width were formed in the route A specimen. The formation of adiabatic shear bands was addressed by concepts of critical shear strain, deformation energy required for void initiation, and microstructural homogeneity associated with ECA operations.

Characteristics of Stress Drop and Energy Budget from Extended Slip-Weakening Model and Scaling Relationships (확장된 slip-weakening 모델의 응력 강하량과 에너지 수지 특성 및 스케일링 관계)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.6
    • /
    • pp.253-266
    • /
    • 2020
  • The extended slip-weakening model was investigated by using a compiled set of source-spectrum-related parameters, i.e. seismic moment Mo, S-wave velocity Vs, corner-frequency fc, and source-controlled high-cut frequency fmax, for 113 shallow crustal earthquakes (focal depth less than 25 km, MW 3.0~7.5) that occurred in Japan from 1987 to 2016. The investigation was focused on the characteristics of stress drop, radiation energy-to-seismic moment ratio, radiation efficiency, and fracture energy release rate, Gc. The scaling relationships of those source parameters were also investigated and compared with those in previous studies, which were based on generally used singular models with the dimensionless numbers corresponding to fc given by Brune and Madariaga. The results showed that the stress drop from the singular model with Madariaga's dimensionless number was equivalent to the breakdown stress drop, as well as Brune's effective stress, rather than to static stress drop as has been usually assumed. The scale dependence of stress drop showed a different tendency in accordance with the size category of the earthquakes, which may be divided into small-moderate earthquakes and moderate-large earthquakes by comparing to Mo = 1017~1018 Nm. The scale dependence was quite similar to that shown by Kanamori and Rivera. The scale dependence was not because of a poor dynamic range of recorded signals or missing data as asserted by Ide and Beroza, but rather it was because of the scale dependent Vr-induced local similarity of spectrum as shown in a previous study by the authors. The energy release rate Gc with respect to breakdown distance Dc from the extended slip-weakening model coincided with that given by Ellsworth and Beroza in a study on the rupture nucleation phase; and the empirical relationship given by Abercrombie and Rice can represent the results from the extended slip-weakening model, the results from laboratory stick-slip experiments by Ohnaka, and the results given by Ellsworth and Beroza simultaneously. Also the energy flux into the breakdown zone was well correlated with the breakdown stress drop, ${\tilde{e}}$ and peak slip velocity of the fault faces. Consequently, the investigation results indicate the appropriateness of the extended slip-weakening model.

Mechanical Properties and Creep Behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe Alloy Cladding Tubes (Zr-Sn-Fe-Cr 및 Zr-Nb-Sn-Fe 합금 피복관의 기계적 특성 및 Creep 거동)

  • Lee, Sang-Yong;Ko, San;Choi, Young-Chul;Kim, Kyu-Tae;Choi, Jae-Ha;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.326-333
    • /
    • 2008
  • Since the 1990s, the second generation of Zirconium alloys containing main alloy compositions of Nb, Sn and Fe have been used as a replacement of Zircaloy-4 (Zr-Sn-Fe-Cr), a first-generation Zirconium alloy, to meet severe and rigorous reactor operating conditions characterized by high-burn-up, high-power and high-pH operations. In this study, the mechanical properties and creep behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe alloys were investigated in a temperature range of $450{\sim}500^{\circ}C$ and in a stress range of $80{\sim}150\;MPa$. The mechanical testing results indicate that the yield and tensile strengths of the Zr-Nb-Sn-Fe alloy are slightly higher compared to those of Zr-Sn-Fe-Cr. This can be explained by the second phase strengthening of the $\beta$-Nb precipitates. The creep test results indicate that the stress exponent for the steady-state creep rate decreases with the increase in the applied stress. However, the stress exponent of the Zr-Sn-Fe-Cr alloy is lower than that of the Zr-Nb-Sn-Fe alloy in a relatively high stress range, whereas the creep activation energy of the former is slightly higher than that of the latter. This can be explained by the dynamic deformation aging effect caused by the interaction of dislocations with Sn substitutional atoms. A higher Sn content leads to a lower stress exponent value and higher creep activation energy.

Experimental Investigation of the Residual Stress on Fatigue Crack Growth of Welded Steel Members (용접(鎔接) 강부재(鋼部材)의 피로균열성장(疲勞龜裂成長)에 대한 잔류응력특성(殘留應力特性)에 관한 연구(硏究))

  • Chang, Dong Il;Kim, Doo Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.99-106
    • /
    • 1987
  • Annealing were performed to investigate the behaviors of the residual stress remaining on the member of a steel structure. According to the fatigue test, the welding part has higher fatigue crack growth rate than the base metal part because the hardening of welding part reduce fracture toughness. However, the heat treatment decrease the hardness and increase the resistance to failure. Thus, the fatigue crack growth rate is improved and it reaches the minimum at $650^{\circ}C$. Elber' s equation includes the effect of the crack-close so that this equation provides a lower the fatigue crack growth rate than Paris-Erdogan' s equation, the Elber's curves show no significant difference to indentify the effect of the residual stress. The Pop loading along the crack length increases as the hardness goes higher. The heat treatment not only decrease the hardness, and the fatigue crack growth rate, but increase the absorption energy and fracture toughness on the member of a steel structure. As the result, the heat treatment produces the resistant ability to cracking which can reduce the degree of danger to failure.

  • PDF

Transient Response of a Crack in a Functionally Graded Piezoelectric Strip between Two Dissimilar Piezoelectric Strip (두 개의 서로 다른 압전재료층 사이의 기능경사압전재료 접합층 내부 균열에 대한 과도응답 해석)

  • Shin, Jeong Woo;Lee, Young-Shin;Kim, Sung Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.206-213
    • /
    • 2013
  • Transient response of a crack in a functionally graded piezoelectric material (FGPM) interface layer between two dissimilar homogeneous piezoelectric layers under anti-plane shear is analyzed using integral transform approaches. The properties of the FGPM layer vary continuously along the thickness. Laplace and Fourier transforms are used to reduce the problem to two sets of dual integral equations, which are then expressed to the Fredholm integral equations of the second kind. Numerical values on the dynamic energy release rate (DERR) are presented for the FGPM to show the effects on electric loading, gradient of the material properties, and thickness of the layers. Computed results yield following conclusions: (a) the DERR increases with the increase of the gradient of the material properties of the FGPM layer; (b) certain direction and magnitude of the electric impact loading impedes crack extension; (c) increase of the thickness of the FGPM layer and the homogeneous piezoelectric layer which has larger material properties than those of the crack plane are beneficial to increase of the resistance of transient fracture of the FGPM layer.

  • PDF

Laboratory Test and Evaluation to Characterize the Cracking Resistance of Asphalt Mixtures (아스팔트 혼합물의 균열 저항성 평가 연구)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.6 no.3 s.21
    • /
    • pp.9-15
    • /
    • 2004
  • The cracking resistance of asphalt mixtures is generally evaluated by measuring a single parameter (i.e., Tensile strength, Stiffness). However, the use of a single parameter has been questioned in the evaluation of asphalt mixture cracking performance. The focus of this study was to clearly identify the key properties and characteristics associated with the cracking resistance of asphalt mixtures. Results of fracture, creep, and strength tests at multiple loading rates performed on the modified and unmodified mixtures showed that the mixture cracking resistance was primarily affected by the rate of micro-damage accumulation. This was reflected in the m-value, without affecting the fracture energy limit. It was also observed that the short loading time (elastic) stiffness alone could not differentiate the mixture cracking resistance of the mixtures. It was concluded that the key to characterize the cracking resistance of asphalt mixture is in the evaluation of the combined effects of creep and failure limits. It was also found that a residual dissipated energy parameter measured from Superpave IDT strength test gave the quick and useful way to distinguish the difference of cracking resistance of asphalt mixtures. Failure strain in the longer-term creep test appeared to be a useful parameter for evaluating the combined effects of creep and failure limits of asphalt mixtures.

  • PDF

The Experimental Analysis of the PVC Foam Cored CFRP Sandwich Composite for the Mixed Mode Delamination Characteristics (복합모드 층간분리특성에 대한 PVC폼 코아 탄소섬유샌드위치 복합재의 실험적 해석)

  • Kwak, Jung Hoon;Yun, Yu Seong;Kwon, Oh Heon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.8-13
    • /
    • 2018
  • The light weight composite materials have been replacing in high performance structures. The object of this study is to examine the effects of the initial crack location about a delamination in a PVC foam cored sandwich composite that is used for the strength improvement of structures. The initial crack location and fiber laminates thickness were changed with several types. The MMB specimen was used for evaluating the fracture toughness and crack behaviors. The material used in the experiment is a commercial twill carbon prepreg in CFRP material and Airex in PVC foam core. Sandwich laminate composites are composed by PVC foam core layer between CFRP face sheets. The face sheets were fabricated as 2 types of 5 and 8 plies. The initial cracks were located in a PVC form core and the interface of upper CFRP sheet. From the results, the crack initiation was affected with the location of the initial crack inserted in the PVC foam core. Among them, the initial crack at 1/3 of the upper part of the PVC foam core was the most rapid progression. And the critical energy release rate was $0.40kJ/m^2$, which is the lowest value when the initial crack was inserted into the interface between a PVC foam core and CFRP laminated with 5 plies. Meanwhile, the highest value of $1.27kJ/m^2$ was obtained when the initial crack was located at the center line in case of the 8 plies.

The Effect of Graphite and MoS2 on Endurance and Cutting Performance of Diamond Micro Blades (다이아몬드 마이크로블레이드의 내구성과 절삭성능에 미치는 흑연과 MoS2의 첨가효과)

  • Moon, Jong-Chul;Kim, Song-Hee
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.6
    • /
    • pp.335-340
    • /
    • 2008
  • Cutting performance and wear behavior were studied with the diamond micro-blade of Cu/Sn bond materials containing various amount of lubricant materials such as graphite and $MoS_2$. Measurement of instantaneous electric power consumption for cutting glass workpiece at the constant velocity was conducted and proposed as a method to assess cutting efficiency. The energy consumption of micro-blade for glass cutting decreased with the content of graphite and $MoS_2$ while wear amount of blade in volume increased with the amount of lubricant addition during the dicing test. It is because that hardness, flexural strength, and fracture toughness ($K_{IC}$) reduced with the amount of lubricant addition. Blades with $MoS_2$ additive showed higher mechanical properties than those with graphite additives when the same amount of the lubricant additive in wt.% was added. Due to the lower density of graphite than $MoS_2$, higher volume fraction of graphite could result in stronger effect on lowering electric power consumption by reducing the friction between blade and work piece however increasing wear rate due to the reduction in strength and fracture toughness. Adhesive wearing mode of micro blade could be remarkably improved by the addition of graphite as well as $MoS_2$.