• Title/Summary/Keyword: fracture energy rate

Search Result 313, Processing Time 0.025 seconds

A Study on the Unstable Crack Growth of Concrete (콘크리트의 불안정 균열성장에 관한 연구)

  • Ko, Young Zoo;Bae, Ju Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.29-36
    • /
    • 1991
  • This experimental research evaluated the length of crack extension with the measured compliances as the mutual comparison factors instead of the method proposed in ASTM E561-80. And this research measured the R-curves with the application to the concept of the strain energy release rate that was formulated from the inelastic energy absorbed during the crack growth. With the interpretation of R-curves, this research obtained the starting point of the unstable crack growth, and compared the values of critical fracture toughness with each other, and then examined the effects of variations of the maximum size of coarse aggregate and the thickness of specimen on the values of the critical fracture toughness.

  • PDF

Effects of Flexural Modulus and Fiber Bridging on the Interlaminar Fracture Energy of Multidirectional Composite Laminates under High Rate Loading (고속하중을 받는 다방향복합적층판의 층간파괴에너지에 미치는 굽힘탄성계수와 섬유가교의 효과)

  • ;A.J.Kinloch
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.40-53
    • /
    • 1999
  • The interlaminar facture behavior of multidirectional carbon-fiber/epoxy composite laminates under low and high rates of test, up to rate of about 11.4m/s has been investigated using the double cantilever beam specimens. The mode I loasing with rates above 1.0m/s had considerable dynamic effects on the load-time curves and thus revealed higher values of the average crack velocity than thet expected from a simple proportional relationship with the test rate. The modified beam analysis utilizing only the opening displacement and crack length exhibited an effective means for evaluating the dynamic fracture energy $G_{IC}$. Flexural modulus increased gradually with an increase of the test rate, which was utilized in the evaluation of $G_{IC}$. Values of $G_{IC}$ at the crack initiation and arrest were scarcely changed with increasing test rate up to 1.0m/s. However the maximum $G_{IC}$ was much enlarged at 11.4m/s due to the large amount of fiber bridging the crack tip. The larger the initial crack length, the smaller the maximum $G_{IC}$ at high rate.

  • PDF

Does Simultaneous Computed Tomography and Quantitative Computed Tomography Show Better Prescription Rate than Dual-energy X-ray Absorptiometry for Osteoporotic Hip Fracture?

  • Ko, Jae Han;Lim, Suhan;Lee, Young Han;Yang, Ick Hwan;Kam, Jin Hwa;Park, Kwan Kyu
    • Hip & pelvis
    • /
    • v.30 no.4
    • /
    • pp.233-240
    • /
    • 2018
  • Purpose: This study aimed to evaluate the efficacy of simultaneous computed tomography (CT) and quantitative CT (QCT) in patients with osteoporotic hip fracture (OHF) by analyzing the osteoporosis detection rate and physician prescription rate in comparison with those of conventional dual-energy X-ray absorptiometry (DXA). Materials and Methods: This study included consecutive patients older than 65 years who underwent internal fixation or hip arthroplasty for OHF between February and May 2015. The patients were assigned to either the QCT (47 patients) or DXA group (51 patients). The patients in the QCT group underwent QCT with hip CT, whereas those in the DXA group underwent DXA after surgery, before discharge, or in the outpatient clinic. In both groups, the patients received osteoporosis medication according to their QCT or DXA results. The osteoporosis evaluation rate and prescription rate were determined at discharge, postoperative (PO) day 2, PO day 6, and PO week 12 during an outpatient clinic visit. Results: The osteoporosis evaluation rate at PO week 12 was 70.6% (36 of 51 patients) in the DXA group and 100% in the QCT group (P<0.01). The prescription rates of osteoporosis medication at discharge were 70.2% and 29.4% (P<0.001) and the cumulative prescription rates at PO week 12 were 87.2% and 60.8% (P=0.003) in the QCT and DXA groups, respectively. Conclusion: Simultaneous CT and QCT significantly increased the evaluation and prescription rates in patients with OHF and may enable appropriate and consistent prescription of osteoporosis medication, which may eventually lead to patients' medication compliance.

p-Version Finite Element Analysis of Cracked Panels Based on Linear Elastic Fracture Mechanics (선형탄성파괴역학 이론에 의한 균열판의 p-Version 유한요소해석)

  • 윤영필;우광성;박병기;신영식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.19-26
    • /
    • 1993
  • The p-version crack model based on integrals of Legendre polynomial and virtual crack extension method is proposed with its potential for application to stress intensity factor computations in linear elastic fracture mechanics. The main advantage of this model is that the data preparation effort is minimal because only a small number of elements are used and the high accuracy and the rapid rate of convergence can be achieved in the vicinity of crack tip. There are two important findings from this study. Firstly, the limit value, the strain energy of the exact solution can be estimated with successive three p-version approximations by ascertaining the approximations is entered the asymptotic range. Secondly, the rate of convergence of p-version model is almost twice that of h-version model on the basis of uniform or quasiuniform mesh refinement for the cracked panel problem subjected tension.

  • PDF

A Study on Characteristics of Strength and Fracture of Austempered Graphite Cast Iron (오스템퍼 회주철의 파괴강도 특성에 관한 연구)

  • 이하성;강동명;이영상
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.3-10
    • /
    • 1996
  • The mechanical properties and fatigue crack growth rate fracture toughness of permanent mould cast austempered gray cast iron(AGI) were compared to those of sand cast AGI. Specimens prepared for tensile, impact and fatigue test were austenitized at $900^{\circ}C$ and austempered at $270^{\circ}C$, $320^{\circ}C$, $370^{\circ}C$ and $420^{\circ}C$ for 1 hour. The strength, impact and fatigue crack propagation behavior of permanent mold cast AGI were found to be superior to those of sand cast AGI. Maximum values in tensile strength, BHN, Charpy impact energy, were obtained at the austempering temperature of $270^{\circ}C$. Samely, the slowest fatigue crack growth rate was appeared at the austempering temperature of $270^{\circ}C$. But ductility of AGI was not improved by permanent mould casting.

  • PDF

The Notched Strength and Fracture Criterion in Plain Woven Glass/Epoxy Composites With a Crack (노치부를 가진 Glass/Epoxy 복합재료의 노치강도 평가와 불안정 파괴조건)

  • 김정규;김도식
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.57-67
    • /
    • 1993
  • The fracture behavior of plain woven glass/epoxy composite plates with a crack is investigated under static tensile loading. It is shown in this paper that the characteristic length associated with the point stress criterion depends on the crack length. To predict the not ched tensile strength, the point stress criterion proposed by Whitney and Nuismer are modified. An excellent agreement is found between the experimental results and the analytical prediction of the modified point stress criterion. The condition of unstable crack growth in the presence of a per-existing flaw(machined notch) is examined by means of the maximum stress intensity factor $K_max$ using maximumload P$_max$. The values of $K_max$ evaluated from energy release rate G$_max$(the compliance me thod) indicate a wide difference. Therefore in regard to anisotropy and heterogeneity of the composite materials studied, the modified shape correction factor f(a/W) is obtained. $K_max$evaluated by the compliance method a little or insignificantly depends on the initial crack length a, the specimen thickness B, the crack angle .theta. and the specimen geometry.

  • PDF

The Effects of Physical Aging of PSF/AS4 Laminate on Fatigue (PSE/AS4 복합재료의 가속노화가 피로강도에 미치는 영향)

  • Kim, Hyung-Won
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.39-44
    • /
    • 2005
  • The effects of aging of PSF/AS4 laminates on fatigue was studied using the new energy release rate analysis. The analysis by the variational mechanics has been useful in providing fracture mechanics interpretation of matrix microcracking in cross-ply laminates. This paper describes the changes of the critical energy release rate (microcracking toughness) according to the aging period under fatigue loading. The master plot by modified Paris-law gives a characterization of a material system's resistance to microcrack formation. PSF $[0/90_{s}]_{s}$ laminates were aged at four different temperature based on the glass transition temperature for 0 to 60 days. At all temperatures, the toughness decreased with aging time. The decrease of the toughness at higher temperature was faster than at lower temperature. To assess the effects of aging on fatigue, the unaged laminates were compared with the laminates which had been aged for 60 days at 170$^{\circ}C$ near 180 $^{\circ}C$ t$_g$. The slope of dD/dN versus ${\Delta}G_m$. of the aged laminates was lower than that of the unaged laminates. There was a significant shift of the aged data to formation of microcracks at the lower values of ${\Delta}G_m$.

  • PDF

Numerically integrated modified virtual crack closure integral technique for 2-D crack problems

  • Palani, G.S.;Dattaguru, B.;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.6
    • /
    • pp.731-744
    • /
    • 2004
  • Modified virtual crack closure integral (MVCCI) technique has become very popular for computation of strain energy release rate (SERR) and stress intensity factor (SIF) for 2-D crack problems. The objective of this paper is to propose a numerical integration procedure for MVCCI so as to generalize the technique and make its application much wider. This new procedure called as numerically integrated MVCCI (NI-MVCCI) will remove the dependence of MVCCI equations on the type of finite element employed in the basic stress analysis. Numerical studies on fracture analysis of 2-D crack (mode I and II) problems have been conducted by employing 4-noded, 8-noded (regular & quarter-point), 9-noded and 12-noded finite elements. For non-singular (regular) elements at crack tip, NI-MVCCI technique generates the same results as MVCCI, but the advantage for higher order regular and singular elements is that complex equations for MVCCI need not be derived. Gauss numerical integration rule to be employed for 8-noded singular (quarter-point) element for accurate computation of SERR and SIF has been recommended based on the numerical studies.

Fracture Behavior of Glass/Resin/Glass Sandwich Structures with Different Resin Thicknesses (서로 다른 레진 두께를 갖는 유리/레진/유리샌드위치 구조의 파괴거동)

  • Park, Jae-Hong;Lee, Eu-Gene;Kim, Tae-Woo;Yim, Hong-Jae;Lee, Kee-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1849-1856
    • /
    • 2010
  • Glass/resin/glass laminate structures are used in the automobile, biological, and display industries. The sandwich structures are used in the micro/nanoimprint process to fabricate a variety of functional components and devices in fields such as display, optics, MEMS, and bioindustry. In the process, micrometer- or nanometer-scale patterns are transferred onto the substrate using UV curing resins. The demodling process has an important impact on productivity. In this study, we investigated the fracture behavior of glass/resin/glass laminates fabricated via UV curing. We performed measurements of the adhesion force and the interfacial energy between the mold and resin materials using the four-point flexural test. The bending-test measurements and the load-displacement curves of the laminates indicate that the fracture behavior is influenced by the interfacial energy between the mold and resin and the resin thickness.

Estimation of Monkman-Grant Parameter for Type 316LN and Cr-Mo Stainless Steels (316LN 및 Cr-Mo 스테인리스강의 Monkman-Grant 파라메타 평가)

  • Kim, Woo-Gon;Kim, Sung-Ho;Lee, Kyung-Yong;Ryu, Woo-Seog
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.223-230
    • /
    • 2001
  • The Monkman-Grant (M-G) and its modified parameters were estimated for modified type 316LN and $9{\sim}12Cr-1Mo$ steels with chemical variations. Several sets of creep data were obtained by constant-load creep tests in $550-650^{\circ}C$ ranges. The relation parameters, m, $m^*$, C and $C^*$ were proposed and discussed for two alloy systems. In creep fracture mode, type 316LN steel showed domination of the intergranular fracture caused by growth and coalescence of cavities. On the other hand, the Cr-Mo steel showed transgranular fracture of the ductile type caused from softening at high temperature. In spite of the basic differences in creep fracture modes as well as creep properties, the M-G and its modified relations demonstrated linearity within the $2{\sigma}$ standard deviation. The value of the m parameter of the M-G relation was 0.90 in the 316LN steel and 0.84 in the Cr-Mo steel. The value of the $m^*$ parameter of the modified relation was 0.94 in the 316LN steel and 0.89 in Cr-Mo steel. The modified relation was superior to the M-G relation because the $m^*$ slopes almost overlapped regardless of creep testing conditions and chemical variations to the two alloy systems.

  • PDF