• Title/Summary/Keyword: fracture characteristics

Search Result 1,532, Processing Time 0.032 seconds

Characteristics of Lineament and Fracture System in the North-eastern Area of Yosu Peninsula (여수반도 북동부지역의 선상구조와 단열계 분포특성)

  • 김경수;이은용;김천수
    • The Journal of Engineering Geology
    • /
    • v.9 no.1
    • /
    • pp.31-43
    • /
    • 1999
  • This study aims to quantify the distribution characteristics of the fracture system for the numerical modeling of groundwater flow in the north-eastern area of Yosu peninsula. The study area is composed mainly of volcanic rocks and granite. The regional and site scale lineament in the range of magnitude Order 1 to Order 3 were analyzed from the geologic map, air-photograph and shaded relief map. The geometric parameter of Order 4 fracture system was acquired from the scanline survey on the ground surface. There is a similar trend in the preferred orientation between the regional lineament and the Order 4 fracture system except the Set 4 of Order 4 fracture system which is not prominent in the type. That is classified to three fracture sat of high dip angle and one of ow dip angle. From the lineament trend. The orientation of Order 4 fracture system has similar characteristics in each rock termination mode analysis, it is considered that the fracture system was developed systematically and sequentially from Set 1 to Set 4 Filling materials are distinct relatively in low dip angle set. The fracture spacing follows to lognoral distribution and the fracture frequency corrected by the modified Terzaghi correction ranges from 0.38 to 1.01 per mater in each fracture set. The fracture trace lenght also follows to lognormal distribution and ranges from 2.9m to 3.7m in each fracture set.

  • PDF

A Study on the Characteristic of Fracture Toughness in the Multi-Pass Welding Zone for Nuclear Piping (원전 배관재 다층 용접부의 파괴 특성에 관한 연구)

  • Park, Jae-Sil;Seok, Chang-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.381-389
    • /
    • 2001
  • The objective of this paper is to evaluate the fracture resistance characteristics of SA508 Cl.1a to SA508 Cl.3 welds manufactured for the reactor coolant loop piping system of nuclear power plants. The effect of the crack plane orientation to the welding process orientation and the preheat temperature on the fracture resistance characteristics were discussed. Results of the fracture resistance test showed that the effect of the crack plane orientation to the welding process orientation of the fracture toughness is significant, while that of preheat temperature on the fracture toughness is negligible. The micro Vickers hardness test, the metallographic observation and the fractography analysis were conducted to analyse the crack jump phenomenon on the L-R crack plane orientation in the multi-pass welding zone. As these results, it is shown that the crack jump phenomenon was produced because of the inhomogeneity between welding beads and the crack plane orientation must be considered for the safety of the welding zone in the piping system.

A Study on the Fracture Characteristics of CFRP by Acoustic Emission (1) (음향방출법에 의한 탄소섬유강화 플라스틱의 파괴 특성에 관한 연구 (1))

  • 윤종희;박성완;이장규;우창기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.283-288
    • /
    • 2003
  • The object of this study is to investigate a fracture characteristics of static tensile test as a function of acoustic emission according to the fiber orientation $\theta=0^{\circ}C$ in carbon/epoxy composites, CFRP. On tensile loading, it was recognized that the fracture characteristics of CFRP in a unidirectional composites. Using the results of the AE analysis(a=2mm), it was found that the amplitude distributions of AE signals corresponding the matrix cracking, fiber debonding or delamination, and fiber breaking are 55~70dB(<200sec), 100dB(200~600sec), and 80dB(>600sec).

  • PDF

Compressive and Fracture Characteristics of Seawater-abrobed Carbon-Epoxy Composite under Hydrostatic Pressure Environment (정수압력에 따른 해수흡수된 Carbon/Epoxy 복합재의 압축 및 파괴특성에 대한 연구)

  • 이지훈;이경엽;김현주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.438-441
    • /
    • 2004
  • In this study, we investigated compressive characteristics of seawater-absorbed carbon-epoxy composite under hydrostatic pressure environment. The hydrostatic pressures applied were 0.1 MPa, 100 MPa, 200 MPa, and 270 MPa. The results showed that the compressive elastic modulus increased about 10 % as the hydrostatic pressure increased from 0.1 MPa to 200 MPa. The modulus increased 2.3 % more as the pressure increased to 270 MPa. Fracture strength and fracture strain increased with pressure in a linear fashion. Fracture strength increased 28 % and fracture strain increased 8.5 % as the hydrostatic pressure increased from 0.1 MPa to 270 MPa.

  • PDF

Characterization of the Spatial Distribution of Fracture System at the Rock Block Scale in the Granitic Area (화강암지역의 암반블록규모 단열체계 분포특성 연구)

  • 김경수;배대석;김천수
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.198-209
    • /
    • 2002
  • To assess deep geological environment for the research and development of hish-level radioactive waste disposal, six boreholes of 3" in diameter were installed in two granitic areas. An areal extent of the rock block scale in the study sites was estimated by the lineament analysis from satellite images and shaded relief maps. The characterization of fracture system developed in rock block scale was carried out based on the acoustic televiewer logging in deep boreholes. In the Yuseong site, the granite rock mass was divided into the upper and lower zones at around -160m based on the probabilistic distribution characteristics of the geometric parameters such as orientation, fracture frequency, spacing and aperture size. Since the groundwater flow is dependent on the fracture system in a fractured rock mass, the correlation of the fracture frequency and cumulative aperture size to the hydraulic conductivity was also discussed.

A Study on the Fracture Behavior of Tooth Interfacial Layer, DEJ (Dental Enamel Junction) (치아 계면 층 DEJ(Dental Enamel Junction)의 파괴 거동에 관한 수치해석적 연구)

  • Mishra, Dhaneshwar;Yoo, Seung-Hyun;Jeong, Ung-Rak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.284-291
    • /
    • 2011
  • Numerical experiments on biological interfacial layer, DEJ by finite element software ABAQUS have been conducted to study its fracture behavior including crack bridging / arresting characteristics in the model. Crack growth simulation has been carried out by numerical tool, XFEM, devoted to study cracks and discontinuities. The fracture toughness of DEJ has been estimated before and after crack bridging. The implications of bridging in numerical study of fracture behavior of DEJ-like biological interface have been discussed. It has been observed that the results provided by the numerical studies without proper accommodation of bridging phenomenon can mislead. This study can be helpful for understanding the DEJ-like biological interface in terms of its fracture toughness, an important material characteristics. This property of the material is an important measure that has to be taken care during design and manufacturing processes.

Signal-based AE characterization of concrete with cement-based piezoelectric composite sensors

  • Lu, Youyuan;Li, Zongjin;Qin, Lei
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.563-581
    • /
    • 2011
  • The signal-based acoustic emission (AE) characterization of concrete fracture process utilizing home-programmed AE monitoring system was performed for three kinds of static loading tests (Cubic-splitting, Direct-shear and Pull-out). Each test was carried out to induce a distinct fracture mode of concrete. Apart from monitoring and recording the corresponding fracture process of concrete, various methods were utilized to distinguish the characteristics of detected AE waveform to interpret the information of fracture behavior of AE sources (i.e. micro-cracks of concrete). Further, more signal-based characters of AE in different stages were analyzed and compared in this study. This research focused on the relationship between AE signal characteristics and fracture processes of concrete. Thereafter, the mode of concrete fracture could be represented in terms of AE signal characteristics. By using cement-based piezoelectric composite sensors, the AE signals could be detected and collected with better sensitivity and minimized waveform distortion, which made the characterization of AE during concrete fracture process feasible. The continuous wavelet analysis technique was employed to analyze the wave-front of AE and figure out the frequency region of the P-wave & S-wave. Defined RA (rising amplitude), AF (average frequency) and P-wave & S-wave importance index were also introduced to study the characters of AE from concrete fracture. It was found that the characters of AE signals detected during monitoring could be used as an indication of the cracking behavior of concrete.

Acoustic Emission Characteristics and Fracture Behaviors of GFRP-Aluminum Honeycomb Hybrid Laminates under Compressive and Bending Loads (GFRP-알루미늄 하니컴 하이브리드 적층판의 압축 및 굽힘 파괴거동과 음향방출해석)

  • Lee, Ki-Ho;Gu, Ja-Uk;Choi, Nak-Sam
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.23-31
    • /
    • 2009
  • This paper investigated acoustic emission (AE) characteristics in association with various fracture processes of glass fiber reinforced plastic skin/ aluminum honeycomb core (GF-AH) hybrid composites under compressive and bending loads. Various failure modes such as skin layer fracture, skin/core interfacial fracture, and local plastic yield buckling and cell wall adhesive fracture occurring in the honeycomb cell wall were classified through the fracture identification in association with the AE frequency and amplitude analysis. The distribution of the event-rate in which it has a high amplitude showed a procedure of cell wall adhesive fracture, skin/core interfacial debonding and fiber breakage, whereas distribution of different peak frequencies indicated the plastic deformation of aluminum cell wall and the friction between honeycomb walls. Consequently, the fracture behaviors of GF-AH hybrid composites could be characterized through a nondestructive evaluation employing the AE technique.

Fracture Characteristics of Carbonized Silicon Grinding Wheels (탄화규소 연삭숫돌의 파괴특성)

  • Oh, Dong-Seuk;Lee, Byong-Gon
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.45-51
    • /
    • 2002
  • In this study, the fracture characteristics of carbonized silicon grinding wheels were examined with tensile, compression, impact and bending test. The experiment was performed for the various grinding wheels with grain size #46, #80, and grade H, L, P, and one vitrified bond and one structure No.7. Also the centrifugal fracture rpm of carbonized silicon grinding wheels were measured and compared with the calculated values for the various wheel diameters and thicknesses. The results showed that the fracture tensile strength was $1.5~2.0Kg_f/mm^2$, and it was increased by decreasing grain size and increasing grade. The fracture compression loads were $1,600~3,000Kg_f$, and the inner stress was higher than outer's. And the absorption energy of impact test was 3.3~4.7 J, and it was increased by decreasing grain size but it was not effected by grade. The fracture bending stress was $0.1~0.2Kg_f/mm^2$, and it was increased by decreasing grain size and increasing grade. The centrifugal fracture rpm of carbonized silicon grinding wheel was about 8,500~12,000 and agreed well with the calculated value, and it was increased by decreasing diameter. However, it was almost constant for the reduction of wheel thickness.

A study of fracture loads and fracture characteristics of teeth

  • Sheen, Chang-Yong;Dong, Jin-Keun;Brantley, William Arthur;Han, David Seungho
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.3
    • /
    • pp.187-192
    • /
    • 2019
  • PURPOSE. The purpose of this in vitro study was to investigate the fracture loads and modes of failure for the full range of natural teeth under simulated occlusal loading. MATERIALS AND METHODS. One hundred and forty natural teeth were taken from mandibles and maxillas of patients. There were 14 groups of teeth with 10 teeth in each group (5 males and 5 females). Each specimen was embedded in resin and mounted on a positioning jig, with the long axis of the tooth at an inclined angle of 30 degrees. A universal testing machine was used to measure the compression load at which fracture of the tooth specimen occurred; loads were applied on the incisal edge and/or functional cusp. RESULTS. The mean fracture load for the mandibular first premolar was the highest (2002 N) of all the types of teeth, while the mean fracture load for the maxillary first premolar was the lowest (525 N). Mean fracture loads for the mandibular and maxillary incisors, and the first and second maxillary premolars, had significantly lower values compared to the other types of teeth. The mean fracture load for the teeth from males was significantly greater than that for the teeth from females. There was an inverse relationship between age and mean fracture load, in which older teeth had lower fracture loads compared to younger teeth. CONCLUSION. The mean fracture loads for natural teeth were significantly different, with dependence on tooth position and the sex and age of the individual.