• 제목/요약/키워드: fracture analysis

검색결과 2,997건 처리시간 0.027초

Gurson Model과 Shear Failure Model을 이용한 파쇄튜브의 찢어짐 해석 (Analyses of Fracture Tube Tearing using Gurson Model and Shear Failure Model)

  • 양승용;권태수;최원목
    • 한국철도학회논문집
    • /
    • 제11권3호
    • /
    • pp.280-285
    • /
    • 2008
  • Gurson model과 shear failure model 두 가지 파괴모델을 이용하여 노치인장시험과 초기 균열을 가지는 파쇄튜브의 압축거동을 유한요소법으로 해석하였다. Shear failure model의 파라미터 값은 노치인장시편의 시험 및 해석을 통하여 결정하였다. 항복강도와 파괴전단변형률 등의 파라미터 값을 정한 후, Gurson model과 shear failure model을 파쇄튜브의 해석에 적용하였다. Gurson model과 shear failure model이 인장시편에 대하여는 비슷한 파괴 거동을 보여주지만 파쇄튜브의 압축력과 균열 성장 속도에서는 다른 결과를 보임을 확인하였다. 즉, shear failure model에서는 Gurson model에 비하여 균열이 전파되기 위해 더 큰 압축력이 요구되었다. 이러한 현상은 shear failure model 이 재질의 손상 과정에 대한 고려를 포함하고 있지 않기 때문인 것으로 생각된다. 어느 모델이 튜브의 해석에 적당한 지를 실험을 통하여 검증할 필요가 있다.

결함발생 시점을 고려한 CANDU 압력관 결함의 확률론적 건전성평가 (Probabilistic Integrity Assessment of CANDU Pressure Tube for the Consideration of Flaw Generation Time)

  • 곽상록;이준성;김영진;박윤원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.155-160
    • /
    • 2001
  • This paper describes a probabilistic fracture mechanics (PFM) analysis based on Monte Carlo (MC) simulation. In the analysis of CANDU pressure tube, it is necessary to perform the PFM analyses based on statistical consideration of flaw generation time. A depth and an aspect ratio of initial semi-elliptical surface crack, a fracture toughness value, delayed hydride cracking (DHC) velocity, and flaw generation time are assumed to be probabilistic variables. In all the analyses, degradation of fracture toughness due to neutron irradiation is considered. Also, the failure criteria considered are plastic collapse, unstable fracture and crack penetration. For the crack growth by DHC, the failure probability was evaluated in due consideration of flaw generation time.

  • PDF

$Si_3N_4/SM45C$ 접합부의 응력해석 및 파괴특성 (Fracture Characteristics and Stress Analysis of $Si_3N_4/SM45C$ Joint)

  • 김기성
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 추계학술대회 논문집
    • /
    • pp.248-253
    • /
    • 1998
  • Recently, the uses of Ceramic/metal bonded joints, resin/metal joints, adhesive joints, composite materials which are composed of dissimiliar materials have increased in various industry fields. Since the ceramic/metal bonded joints material is made at a high temperature, residual stress distributions due to differences in material properties were investigated by varying material parameters. The two dimensional finite element analysis was performed to study residual stress distribution in Si3N4/SM45C bonded joint with a copper interlayer between the silicon nitride(Si3N4) and the structural carbon steel(SM45C) and 4-point bending tests were carried out under room temperature. Fracture surface and crack propagation path were observed using scanning electron microscope and characteristics of its fracture was discussed.

  • PDF

놋취가 있는 복합적층판의 잔류강도 해석 (Residual strength analysis for notched composite laminates)

  • 김성준;황인희
    • 한국항공운항학회지
    • /
    • 제20권1호
    • /
    • pp.103-111
    • /
    • 2012
  • This study reviews several fracture models for predicting the residual strength of notched composite laminates. Representative experimental results on the residual strength of composite laminates containing a notch subjected to static uniaxial tensile loading have been collected from open literature. And notched strength data for T300/5208 are analyzed. The various parameters associated with the fracture models have been determined for laminates. Notched strength data sets are compared with fracture models and the applicability of the different fracture models in predicting the notched strength of composite laminates is discussed. And static tests have been performed on 2.0mm depth notched specimen. And the test results are compared with analysis models.

A coupled damage-viscoplasticity model for the analysis of localisation and size effects

  • Georgin, J.F.;Sluys, L.J.;Reynouard, J.M.
    • Computers and Concrete
    • /
    • 제1권2호
    • /
    • pp.169-188
    • /
    • 2004
  • A coupled damage-viscoplasticity model is presented for the analysis of localisation and size effects. On one hand, viscosity helps to avoid mesh sensitivity because of the introduction of a length scale in the model and, on the other hand, enables to represent size effects. Size effects were analysed by means of three-point bending tests. Correlation between the fracture energy parameter measured experimentally and the density fracture energy modelling parameter is discussed. It has been shown that the dependence of nominal strength and fracture energy on size is determined by the ligament length in comparison with the width of the fracture process zone.

형상압연시 연성파괴의 탄소성 유한요소해석 (The Elasto-Plastic Finite Element Analysis of Ductile Fracture in Shape Rolling)

  • 원영목;오규환
    • 소성∙가공
    • /
    • 제5권1호
    • /
    • pp.72-80
    • /
    • 1996
  • During the shape rolling process the influence of reduction ration and taper of shape roller on deformation and limit of ductile fracture such as free surface cracks developing in the workpiece has been studied. The deformation behaviours were analyzed by the 3-dimensional elasto-pastic finite element method and the conditions of ductile fracture were determined from 3-dimensional elasto-plastic finite element method and modified Cockrogt-Latham criterion. The deformed geometry and prediction of ductile fracture by 3-dimensional elasto-plastic finite element method are compared with experimental results The calcuated results are in good agreements with experimental data. The analysis used in the study was found to be effective in predicting the shape rolling process.

  • PDF

혼합균열모델을 적용한 콘크리트의 손상 및 파괴해석 (Damage and Fracture Analysis of Concrete using Homogenized Crack Model)

  • 김광수;송하원;남진원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.155-158
    • /
    • 2005
  • Damage and fracture of concrete is characterized as the degradation of strength and stiffness. There can be modeled as the so-called homogenized crack model which can overcome the mesh sensitivity. But the plasticity and damage modeling for damage behavior before the fracture of concrete should be combined with the crack model. In this study, a damage function and an unified hardening-softening function are applied to the homogenized crack model to develope a 3-dimensional FEM program for nonlinear damage and fracture analysis of concrete. The comparison of numerical results and experimental data show that the combined modeling in this study can simulate the damage and fracture of concrete without the mesh-sensitivity. It is also shown that the behavior of the so-called Engineering Cementitious Composite(ECC) characterized by strain-hardening and multiple cracks can be well simulated using the modeling.

  • PDF

표준 파괴인성시험편에 대한 탄소성 유한요소해석 (Elastic Plastic Finite Element Calculation of Standard Fracture Toughness Specimens)

  • 박용걸
    • 전산구조공학
    • /
    • 제7권4호
    • /
    • pp.113-118
    • /
    • 1994
  • 본 연구의 목적은 표준파괴인장시험편에 대한 탄소성유한요소해석이다. 탄소성파괴역학의 이론과 수치해석을 위한 조건들이 기술되고 균열선단의 특이성을 모형화하기 위한 가능성이 논의된다. 표준파괴인장시험편의 탄소성유한요소해석으로부터 J적분이나 균열개구변위(COD)와 같은 파괴역학계수들과 그들의 상관관계가 계산되고 소성역의 크기와 형태가 구해진다. 실험과 계산결과들이 비교되고 한계하중의 계산이 논의된다.

  • PDF

Sensitivity analysis of skull fracture

  • Vicini, Anthony;Goswami, Tarun
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제3권1호
    • /
    • pp.47-57
    • /
    • 2016
  • Results from multiple high profile experiments on the parameters influencing the impacts that cause skull fractures to the frontal, temporal, and parietal bones were gathered and analyzed. The location of the impact as a binary function of frontal or lateral strike, the velocity, the striking area of the impactor, and the force needed to cause skull fracture in each experiment were subjected to statistical analysis using the JMP statistical software pack. A novel neural network model predicting skull fracture threshold was developed with a high statistical correlation ($R^2=0.978$) and presented in this text. Despite variation within individual studies, the equation herein proposes a 3 kN greater resistance to fracture for the frontal bone when compared to the temporoparietal bones. Additionally, impacts with low velocities (<4.1 m/s) were more prone to cause fracture in the lateral regions of the skull when compared to similar velocity frontal impacts. Conversely, higher velocity impacts (>4.1 m/s) showed a greater frontal sensitivity.

소형펀치 시험을 이용한 API X52 저온 수소환경 파괴인성 예측 (Fracture Toughness Prediction of API X52 Using Small Punch Test Data in Hydrogen at Low Temperatures)

  • 김재윤;서기완;김윤재;김기석
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.117-129
    • /
    • 2023
  • Hydrogen embrittlement of a pipe is an important factor in hydrogen transport. To characterize hydrogen embrittlement, tensile and fracture toughness tests should be conducted. However, in the case of hydrogen-embrittled materials, it is difficult to perform tests in hydrogen environment, particularly at low temperatures. It would be useful to develop a methodology to predict the fracture toughness of hydrogen-embrittled materials at low temperatures using more efficient tests. In this study, the fracture toughness of API X52 steels in hydrogen at low temperatures is predicted from numerical simulation using coupled finite element (FE) damage analyses with FE diffusion analysis, calibrated by analyzing small punch test data.