• Title/Summary/Keyword: fractional step method

Search Result 109, Processing Time 0.022 seconds

Large Eddy simulation using P2P1 finite element formulation (P2P1 유한요소를 이용한 LES)

  • Choi, Hyoung-Gwon;Nam, Young-Sok;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.386-391
    • /
    • 2001
  • A finite element code based on P2P1 tetra element has been developed for the large eddy simulation (LES) of turbulent flows around a complex geometry. Fractional 4-step algorithm is employed to obtain time accurate solution since it is less expensive than the integrated formulation, in which the velocity and pressure fields are solved at the same time. Crank-Nicolson method is used for second order temporal discretization and Galerkin method is adopted for spatial discretization. For very high Reynolds number flows, which would require a formidable number of nodes to resolve the flow field, SUPG (Streamline Upwind Petrov-Galerkin) method is applied to the quadratic interpolation function for velocity variables, Noting that the calculation of intrinsic time scale is very complicated when using SUPG for quadratic tetra element of velocity variables, the present study uses a unique intrinsic time scale proposed by Codina et al. since it makes the present three-dimensional unstructured code much simpler in terms of implementing SUPG. In order to see the effect of numerical diffusion caused by using an upwind scheme (SUPG), those obtained from P2P1 Galerkin method and P2P1 Petrov-Galerkin approach are compared for the flow around a sphere at some Reynolds number. Smagorinsky model is adopted as subgrid scale models in the context of P2P1 finite element method. As a benchmark problem for code validation, turbulent flows around a sphere and a MIRA model have been studied at various Reynolds numbers.

  • PDF

Immersed Boundary Method for numerical Analysis of Bridge Section (가상경계법을 이용한 교량 내풍단면 유동장 수치해석)

  • Kim, Hak Sun;Lee, Sungsu;Nho, Jae Geun
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.69-69
    • /
    • 2011
  • 본 논문에서는 비정상 상태의 비압축성 유동장을 해석하기 위하여 물체맞춤격자방법이 아닌 가상경계법을 사용하였다. 가상경계법은 구조격자를 사용하여 구조물 경계면에서 Momentum Forceing을 사용하여 가상의 경계를 만들어 유동장을 해석하는 방법이다. Navier-Stoke 방정식의 수치 이산화 방법으로 Kim et al(1985)이 사용한 Fractional Step Method(FSM)을 사용하였다. 시간에 대하여 semi-implicit FSM를 사용하였고, 확산항에 대해서는 2차 정확도의 Crank-Nicolson Method를 대류항은 3차 정확도의 Runge-Kutta Method를 사용 하였다. 본 연구에서는 가상경계법을 이용한 유동장 해석이 교량 단면에 대하여 수치해석이 가능한지 검토하였다. 가상경계법은 현재 많은 연구가 유선형의 구조물에 대하여 수행되어 오고 있다. 교량 단면과 같은 각 진 구조물에 대한 검토는 아직 미비한 실정이다. 가상경계법에서 다루고 있는 구조물 경계면에서의 Momentum Forcing 방법이 유선형의 구조물에 맞추어 연구가 진행되었기 때문이다. 먼저 본 연구의 프로그램을 검증하기 위하여 원형 실린더에 대하여 가상경계법을 적용한 결과 Re 수 200에서 Strouhal Number, 양력계수, 항력계수를 이전 연구 결과와 비교하였다. Williamson(1988)과 Zhang(1995)의 연구결과와 유사한 결과를 얻을 수 있다. 그리고 교량의 단면과 같은 각진 구조물(Bluff Body)에 대하여 가상경계법 적용하였다. 본 논문의 연구에서 평가 대상으로 하고 있는 2차원 교량 단면에 대하여 유동장 해석을 하였다. 본 논문에서 정량적인 유체력과 유동장에 대한 비교 및 검토가 이루어지지 못했지만 압력장과 유선의 형태가 이론적인 값을 벗어나지 않고 있는 것으로 확인 되었다. Re 수 2700에서 전산 해석을 수행하였으며, 교량 단면 주위의 압력계수와 박리현상 그리고 후류에서의 Vortex shedding 현상이 모두 적절한 분포가 나타나는 것을 확인할 수 있었다. 따라서 가상경계법을 이용하여 각진 구조물에 대한 주위 유동장해석에 대한 가능성을 확인하였으며, 풍동실험과의 결과비교를 통하여 가상경계법을 이용하여 교량 단면 주위의 유동장 해석 결과를 정량적으로 비교할 것이다.

  • PDF

Comparative Study on Sloshing Impact Flows between PIV and CFD (슬로싱 충격현상 해석을 위한 모형실험과 수치해석 적용에 관한 비교 연구: PIV vs. CFD)

  • Yang, Kyung-Kyu;Kim, Jieung;Kim, Sang-Yeob;Kim, Yonghwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.154-162
    • /
    • 2015
  • In this study, experimental and numerical methods were applied to observe sloshing impact phenomena. A two-dimensional rectangular tank filled with water and air was considered with a specific excitation condition that induced a hydrodynamic impact without an air pocket at the top corner of the tank. High-speed cameras and a pressure measurement system were synchronized, and a particle image velocimetry (PIV) technique was applied to measure the velocity field and corresponding pressure. The experimental condition was implemented in a numerical computation to solve incompressible two-phase flows using a Cartesian-grid method. The discretized solution was obtained using the finite difference and constraint-interpolation-profile (CIP) methods, which adopt a fractional step scheme for coupling the pressure and velocity. The tangent of the hyperbola for interface capturing (THINC) scheme was used with the weighed line interface calculation (WLIC) method to capture the interface between the air and water. The calculated impact pressures and velocity fields were compared with experimental data, and the relationship between the local velocity and pressure was investigated based on the computational results.

A Study on Molding Condition of Aspheric Glass Lenses for Mobile Phone Module Using Design of Experiments ; Pressing Condition (DOE를 적용한 카메라폰 모듈용 비구면 Glass렌즈의 성형조건 연구 ; 가압조건)

  • Cha, Du-Hwan;Lee, Jun-Key;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.57-57
    • /
    • 2007
  • Aspheric glass lenses have many optical advantages, for glass have superior optical performance and an aspheric form can reduce optical aberrations. Recently, the use of it is rapidly expanding as the mass production becomes possible by glass molding press and so this method is considered as the best method for fabricating an aspheric glass lens, but it is difficult to control many parameters for pressing and cooling process. Design of experiments (DOE) is a very useful tool to design and analyze complicated industrial design problems. This study investigated the pressing conditions to mold aspheric glass lenses for mega pixel phone camera module using DOE method. We have applied fractional factorial design and the response variable was set form accuracy (PV) of aspheric surface of molded lens. The results of analysis indicates that all factors expect for pressing force of each step are available for the form accuracy (PV). It was the optimum condition of the designed pressing conditions for lowering the form accuracy(PV) value of molded lens that all factors were at the low level. The form accuracy (PV) of mold and molded lens under the optimum condition are $0.85\;{\mu}m$ and $0.922\;{\mu}m$ respectively.

  • PDF

Incremental Regression based on a Sliding Window for Stream Data Prediction (스트림 데이타 예측을 위한 슬라이딩 윈도우 기반 점진적 회귀분석)

  • Kim, Sung-Hyun;Jin, Long;Ryu, Keun-Ho
    • Journal of KIISE:Databases
    • /
    • v.34 no.6
    • /
    • pp.483-492
    • /
    • 2007
  • Time series of conventional prediction techniques uses the model which is generated from the training step. This model is applied to new input data without any change. If this model is applied directly to stream data, the rate of prediction accuracy will be decreased. This paper proposes an stream data prediction technique using sliding window and regression. This technique considers the characteristic of time series which may be changed over time. It is composed of two steps. The first step executes a fractional process for applying input data to the regression model. The second step updates the model by using its information as new data. Additionally, the model is maintained by only recent data in a queue. This approach has the following two advantages. It maintains the minimum information of the model by using a matrix, so space complexity is reduced. Moreover, it prevents the increment of error rate by updating the model over time. Accuracy rate of the proposed method is measured by RME(Relative Mean Error) and RMSE(Root Mean Square Error). The results of stream data prediction experiment are performed by the proposed technique IMQR(Incremental Multiple Quadratic Regression) is more efficient than those of MLR(Multiple Linear Regression) and SVR(Support Vector Regression).

Non-hydrostatic modeling of nonlinear waves in a circular channel (비정수압 모형을 이용한 원형 수로에서 비선형 파랑의 해석)

  • Choi, Doo-Yong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.335-344
    • /
    • 2011
  • A curvilinear non-hydrostatic free surface model is developed to investigate nonlinear wave interactions in a circular channel. The proposed model solves the unsteady Navier-Stokes equations in a three-dimensional domain with a pressure correction method, which is one of fractional step methods. A hybrid staggered-grid layout in the vertical direction is implemented, which renders relatively simple resulting pressure equation as well as free surface closure. Numerical accuracy with respect to wave nonlinearity is tested against the fifth-order Stokes solution in a two-dimensional numerical wave tank. Numerical applications center on the evolution of nonlinear waves including diffraction and reflection affected by the curvature of side wall in a circular channel comparing with linear waves. Except for a highly nonlinear bichrmatic wave, the model's results are in good agreement with superimposed analytical solution that neglects nonlinear effects. Through the numerical simulation of the highly nonlinear bichramatic wave, the model shows its capability to investigate the evolution of nonlinear wave groups in a circular channel.

OPTIMUM STORAGE REALLOCATION AND GATE OPERATION IN MULTIPURPOSE RESERVOIRS

  • Hamid Moradkhani
    • Water Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.57-62
    • /
    • 2002
  • This research is intended to integrate long-term operation rules and real time operation policy for conservation & flood control in a reservoir. The familiar Yield model has been modified and used to provide long-term rule curves. The model employs linear programming technique under given physical conditions, i.e., total capacity, dead storage, spillways, outlet capacity and their respective elevations to find required and desired minimum storage fur different demands. To investigate the system behavior resulting from the above-mentioned operating policy, i.e., the rule curves, the simulation model was used. Results of the simulation model show that the results of the optimization model are indeed valid. After confirmation of the above mentioned rule curves by the simulation models, gate operation procedure was merged with the long term operation rules to determine the optimum reservoir operating policy. In the gate operation procedure, operating policy in downstream flood plain, i.e., determination of damaging and non-damaging discharges in flood plain, peak floods, which could be routed by reservoir, are determined. Also outflow hydrograph and variations of water surface levels for two known hydrographs are determined. To examine efficiency of the above-mentioned models and their ability in determining the optimum operation policy, Esteghlal reservoir in Iran was analyzed as a case study. A numerical model fur the solution of two-dimensional dam break problems using fractional step method is developed on unstructured grid. The model is based on second-order Weighted Averaged Flux(WAF) scheme with HLLC approximate Riemann solver. To control the nonphysical oscillations associated with second-order accuracy, TVD scheme with SUPERBEE limiter is used. The developed model is verified by comparing the computational solutions with analytic solutions in idealized test cases. Very good agreements have been achieved in the verifications.

  • PDF

Statistical Optimization of Solid Growth-medium for Rapid and Large Screening of Polysaccharides High-yielding Mycelial Cells of Inonotus obliquus (단백다당체 고생산성의 Inonotus obliquus 균주의 신속 개량을 위한 고체 성장배지의 통계적 최적화)

  • Hong, Hyung-Pyo;Jeong, Yong-Seob;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.142-154
    • /
    • 2010
  • The protein-bound innerpolysaccharides (IPS) produced by suspended mycelial cultures of Inonotus obliquus have promising potentials as an effective antidiabetic as well as an immunostimulating agents. To enhance IPS production, intensive strain improvement process should be carried out using large amount of UV-mutated protoplasts. During the whole strain-screening process, the stage of solid growth-culture was found to be the most time-requiring step, thus preventing rapid screening of high-yielding producers. In order to reduce the cell growth period in the solid growth-stage, therefore, solid growth-medium was optimized using the statistical methods such as (i) Plackett-Burman and fractional factorial designs (FFD) for selecting positive medium components, and (ii) steepest ascent (SAM) and response surface (RSM) methods for determining optimum concentrations of the selected components. By adopting the medium composition recommended by the SAM experiment, significantly higher growth rate was obtained in the solid growth-cultures, as represented by about 41% larger diameter of the cell growth circle and higher mycelial density. Sequential optimization process performed using the RSM experiments finally recommended the medium composition as follows: glucose 25.61g/L, brown rice 12.53 g/L, soytone peptone 12.53 g/L, $MgSO_4$ 5.53 g/L, and agar 20 g/L. It should be noted that this composition was almost similar to the medium combinations determined by the SAM experiment, demonstrating that the SAM was very helpful in finding out the final optimum concentrations. Through the use of this optimized medium, the period for the solid growth-culture could be successfully reduced to about 8 days from the previous 15~20 days, thus enabling large and mass screening of high producers in a relatively short period.

Characteristics of Water Level and Velocity Changes due to the Propagation of Bore (단파의 전파에 따른 수위 및 유속변화의 특성에 관한 연구)

  • Lee, Kwang Ho;Kim, Do Sam;Yeh, Harry
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.575-589
    • /
    • 2008
  • In the present work, we investigate the hydrodynamic behavior of a turbulent bore, such as tsunami bore and tidal bore, generated by the removal of a gate with water impounded on one side. The bore generation system is similar to that used in a general dam-break problem. In order to the numerical simulation of the formation and propagation of a bore, we consider the incompressible flows of two immiscible fluids, liquid and gas, governed by the Navier-Stokes equations. The interface tracking between two fluids is achieved by the volume-of-fluid (VOF) technique and the M-type cubic interpolated propagation (MCIP) scheme is used to solve the Navier-Stokes equations. The MCIP method is a low diffusive and stable scheme and is generally extended the original one-dimensional CIP to higher dimensions, using a fractional step technique. Further, large eddy simulation (LES) closure scheme, a cost-effective approach to turbulence simulation, is used to predict the evolution of quantities associated with turbulence. In order to verify the applicability of the developed numerical model to the bore simulation, laboratory experiments are performed in a wave tank. Comparisons are made between the numerical results by the present model and the experimental data and good agreement is achieved.