• Title/Summary/Keyword: fractional power

Search Result 141, Processing Time 0.027 seconds

Analysis on Application Plan of Factorial Design in Relation to Responses for Electronically-controlled Diesel Engine (전자제어식 디젤엔진에 있어서 반응치에 따른 요인배치법의 활용 방안에 대한 분석)

  • Lee, Jung-Gyu;Kim, Min-Jong;Koh, Sung-Wi;Yang, Ju-Ho;Han, Kyu-Il;Koh, Dae-Kwon;Jung, Suk-Ho
    • Journal of Power System Engineering
    • /
    • v.22 no.1
    • /
    • pp.5-10
    • /
    • 2018
  • In order to employ factorial design on electronically-controlled diesel engine, effects of 5 factors on specific fuel consumption, nitrogen oxides and carbon monoxide were examined by fractional and full factorial design in this research. There were different results between fractional and full factorial design, then effect of variables as ambient condition and measurement of fuel consumption were confirmed. It was shown that ambient condition affected uniformly trend of nitrogen oxides and carbon monoxide. However, both ambient condition and measurement of fuel consumption had nothing to do with trend of specific fuel consumption and therefore it must be careful to employ factorial design on specific fuel consumption as response.

Optimum Design of Integer and Fractional-Order PID Controllers for Boost Converter Using SPEA Look-up Tables

  • Amirahmadi, Ahmadreza;Rafiei, Mohammadreza;Tehrani, Kambiz;Griva, Giovanni;Batarseh, Issa
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.160-176
    • /
    • 2015
  • This paper presents a method of designing optimal integer- and fractional-order proportional-integral-derivative (FOPID) controllers for a boost converter to gain a set of favorable characteristics at various operating points. A Pareto-based multi-objective optimization approach called strength Pareto evolutionary algorithm (SPEA) is used to obtain fast and low overshoot start-up and dynamic responses and switching stability. The optimization approach generates a set of optimal gains called Pareto set, which corresponds to a Pareto front. The Pareto front is a set of optimal results for objective functions. These results provide designers with a trade-off look-up table, in which they can easily choose any of the optimal gains based on design requirements. The SPEA also overcomes the difficulties of tuning the FOPID controller, which is an extension to the classic integer-order PID controllers and potentially promises better results. The proposed optimized FOPID controller provides an excellent start-up response and the desired dynamic response. This paper presents a detailed comparison of the optimum integer- and the fractional-order PID controllers. Extensive simulation and experimental results prove the superiority of the proposed design methodology to achieve a wide set of desired technical goals.

Augmentation of Fractional-Order PI Controller with Nonlinear Error-Modulator for Enhancing Robustness of DC-DC Boost Converters

  • Saleem, Omer;Rizwan, Mohsin;Khizar, Ahmad;Ahmad, Muaaz
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.835-845
    • /
    • 2019
  • This paper presents a robust-optimal control strategy to improve the output-voltage error-tracking and control capability of a DC-DC boost converter. The proposed strategy employs an optimized Fractional-order Proportional-Integral (FoPI) controller that serves to eliminate oscillations, overshoots, undershoots and steady-state fluctuations. In order to significantly improve the error convergence-rate during a transient response, the FoPI controller is augmented with a pre-stage nonlinear error-modulator. The modulator combines the variations in the error and error-derivative via the signed-distance method. Then it feeds the aggregated-signal to a smooth sigmoidal control surface constituting an optimized hyperbolic secant function. The error-derivative is evaluated by measuring the output-capacitor current in order to compensate the hysteresis effect rendered by the parasitic impedances. The resulting modulated-signal is fed to the FoPI controller. The fixed controller parameters are meta-heuristically selected via a Particle-Swarm-Optimization (PSO) algorithm. The proposed control scheme exhibits rapid transits with improved damping in its response which aids in efficiently rejecting external disturbances such as load-transients and input-fluctuations. The superior robustness and time-optimality of the proposed control strategy is validated via experimental results.

Energy-Efficient Power Allocation for Cognitive Radio Networks with Joint Overlay and Underlay Spectrum Access Mechanism

  • Zuo, Jiakuo;Zhao, Li;Bao, Yongqiang;Zou, Cairong
    • ETRI Journal
    • /
    • v.37 no.3
    • /
    • pp.471-479
    • /
    • 2015
  • Traditional designs of cognitive radio (CR) focus on maximizing system throughput. In this paper, we study the joint overlay and underlay power allocation problem for orthogonal frequency-division multiple access-based CR. Instead of maximizing system throughput, we aim to maximize system energy efficiency (EE), measured by a "bit per Joule" metric, while maintaining the minimal rate requirement of a given CR system, under the total power constraint of a secondary user and interference constraints of primary users. The formulated energy-efficient power allocation (EEPA) problem is nonconvex; to make it solvable, we first transform the original problem into a convex optimization problem via fractional programming, and then the Lagrange dual decomposition method is used to solve the equivalent convex optimization problem. Finally, an optimal EEPA allocation scheme is proposed. Numerical results show that the proposed method can achieve better EE performance.

Large tests of independence in incomplete two-way contingency tables using fractional imputation

  • Kang, Shin-Soo;Larsen, Michael D.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.971-984
    • /
    • 2015
  • Imputation procedures fill-in missing values, thereby enabling complete data analyses. Fully efficient fractional imputation (FEFI) and multiple imputation (MI) create multiple versions of the missing observations, thereby reflecting uncertainty about their true values. Methods have been described for hypothesis testing with multiple imputation. Fractional imputation assigns weights to the observed data to compensate for missing values. The focus of this article is the development of tests of independence using FEFI for partially classified two-way contingency tables. Wald and deviance tests of independence under FEFI are proposed. Simulations are used to compare type I error rates and Power. The partially observed marginal information is useful for estimating the joint distribution of cell probabilities, but it is not useful for testing association. FEFI compares favorably to other methods in simulations.

Development of Fractional Slot Axial Flux Permanent Magnet Synchronous Generator with Low Cogging Torque and Reduced Voltage Regulation (분수슬롯을 가지는 축방향 자속형 영구자석 동기전동기의 코깅토크 및 전압리플 저감에 관한 연구)

  • Choi, Da-Woon;Li, Jian;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1111-1112
    • /
    • 2011
  • This paper investigated application of fractional-slot concentrated-winding axial flux permanent magnet machines for wind turbines. Design criteria of cogging torque and voltage regulation was firstly proposed for this kind of application. Fractional winding has small cogging torque which is highlight for wind turbines, but slot leakage inductance would increase voltage regulation, which is an important performance index of generators. By varying slot opening, cogging torque and slot leakage inductance could be adjusted. In this paper, cogging torque and inductances were calculated by both analytical and finite element methods. Voltage regulation was studied by two-axis model under unity-power-factor load and verified by transient finite element analysis.

  • PDF

Integer Frequency Offset Estimation of OFDM Systems

  • Yoon, Dae-Gung;Han, Dong-Seog
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.255-258
    • /
    • 2005
  • A blind-mode integer frequency offset estimation algorithm is proposed for an OFDM system. Imperfect integer frequency offset estimation causes ambiguity in the data sub-carrier position. Morelli's blind integer frequency offiet estimation algorithm exploits the likelihood function by comparing the power in sub-carriers. It, however, shows performance degradation when there is the fractional frequency offset. The proposed algorithm solves this by using interpolation in the frequency domain. In this algorithm, it is exploited that the effect of the frequency offset is shown as a shift of power spectrum. By calculating the covariance of over-sampled samples, most approximate samples to integer point are obtained. It enables integer frequency offset estimation less affected by fractional frequency offset.

  • PDF

Bandwidth Efficient Digital Communication with Wavelet Approximations

  • Lo, Chet;Moon, Todd K.
    • Journal of Communications and Networks
    • /
    • v.4 no.2
    • /
    • pp.97-101
    • /
    • 2002
  • Based on their shift and scale orthogonality properties, scaling and wavelet functions may be used as signaling functions having good frequency localization as determined by the fractional-out-of-band power (FOOBP). In this paper, application of Daubechies' wavelet and scaling functions as baseband signaling functions is described, with a focus on finding discretely realizable pulse-shaping transfer function circuits whose outputs approximate scaling and wavelet functions when driven by more conventional digital signaling waveforms. It is also shown that the inter-symbol interference (ISI) introduced by the approximation has negligible effect on the performance in terms of signal-to-noise ratio (SNR). Moreover, the approximations are often more bandwidth efficient than the original wavelet functions. These waveforms thus illustrate an example solution of a tradeoff between residual ISI and bandwidth efficiency as a signal design problem.

A Study on Statistical Parameters for the Evaluation of Regional Air Quality Modeling Results - Focused on Fine Dust Modeling - (지역규모 대기질 모델 결과 평가를 위한 통계 검증지표 활용 - 미세먼지 모델링을 중심으로 -)

  • Kim, Cheol-Hee;Lee, Sang-Hyun;Jang, Min;Chun, Sungnam;Kang, Suji;Ko, Kwang-Kun;Lee, Jong-Jae;Lee, Hyo-Jung
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.4
    • /
    • pp.272-285
    • /
    • 2020
  • We investigated statistical evaluation parameters for 3D meteorological and air quality models and selected several quantitative indicator references, and summarized the reference values of the statistical parameters for domestic air quality modeling researcher. The finally selected 9 statistical parameters are MB (Mean Bias), ME (Mean Error), MNB (Mean Normalized Bias Error), MNE (Mean Absolute Gross Error), RMSE (Root Mean Square Error), IOA (Index of Agreement), R (Correlation Coefficient), FE (Fractional Error), FB (Fractional Bias), and the associated reference values are summarized. The results showed that MB and ME have been widely used in evaluating the meteorological model output, and NMB and NME are most frequently used for air quality model results. In addition, discussed are the presentation diagrams such as Soccer Plot, Taylor diagram, and Q-Q (Quantile-Quantile) diagram. The current results from our study is expected to be effectively used as the statistical evaluation parameters suitable for situation in Korea considering various characteristics such as including the mountainous surface areas.

Design of A 1.8-V CMOS Frequency Synthesizer for WCDMA

  • Lee, Young-Mi;Lee, Ju-Sang;Ju, Ri-A;Jang, Bu-Cheol;Yu, Sang-Dae
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1312-1315
    • /
    • 2002
  • This research describes the design of a fully integrated fractional-N frequency synthesizer intended for the local oscillator in IMT-2000 system using 0.18-$\mu\textrm{m}$ CMOS technology and 1.8-V single power supply. The designed fractional-N synthesizer contains following components. Modified charge pump uses active cascode transistors to achieve the high output impedance. A multi-modulus prescaler has modified ECL-like D flip-flop with additional diode-connected transistors for short transient time and high frequency operation. And phase-frequency detector, integrated passive loop filter, LC-tuned VCO having a tuning range from 1.584 to 2.4 ㎓ at 1.8-V power supply, and higher-order sigma-delta modulator are contained. Finally, designed frequency synthesizer provides 5 ㎒ channel spacing with -122.6 dBc/Hz at 1 ㎒ in the WCDMA band and total output power is 28 mW.

  • PDF