• 제목/요약/키워드: fraction as a ratio

검색결과 837건 처리시간 0.03초

Strut-tie model for two-span continuous RC deep beams

  • Chae, H.S.;Yun, Y.M.
    • Computers and Concrete
    • /
    • 제16권3호
    • /
    • pp.357-380
    • /
    • 2015
  • In this study, a simple indeterminate strut-tie model which reflects complicated characteristics of the ultimate structural behavior of continuous reinforced concrete deep beams was proposed. In addition, the load distribution ratio, defined as the fraction of applied load transferred by a vertical tie of truss load transfer mechanism, was proposed to help structural designers perform the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie was introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete were reflected upon. To verify the appropriateness of the present study, the ultimate strength of 58 continuous reinforced concrete deep beams tested to shear failure was evaluated by the ACI 318M-11's strut-tie model approach associated with the presented indeterminate strut-tie model and load distribution ratio. The ultimate strength of the continuous deep beams was also estimated by the experimental shear equations, conventional design codes that were based on experimental and theoretical shear strength models, and current strut-tie model design codes. The validity of the proposed strut-tie model and load distribution ratio was examined through the comparison of the strength analysis results classified according to the primary design variables. The present study associated with the indeterminate strut-tie model and load distribution ratio evaluated the ultimate strength of the continuous deep beams fairly well compared with those by other approaches. In addition, the present approach reflected the effects of the primary design variables on the ultimate strength of the continuous deep beams consistently and reasonably. The present study may provide an opportunity to help structural designers conduct the rational and practical strut-tie model design of continuous deep beams.

연소조건에서 중금속 염화물의 휘발 및 유독성 제어 (Volatilization and Toxicity Control of Heavy Metal Chlorides under Combustion Conditions)

  • 서용칠
    • 한국안전학회지
    • /
    • 제8권4호
    • /
    • pp.175-182
    • /
    • 1993
  • Volatilization of toxic heavy metals, especially, metal chlorides at elevated temperatures in oxidation conditions was observed using a thermogravimetric furnace since such metal chlorides used to be a cause for the disease of industrial workers by their toxicity and high volatile extent. Most of tested metal chloride compounds were evaporated or decomposed into gas phase at elevated temperatures ranged from 200~90$0^{\circ}C$, while CrCl$_3$ and NiC1$_2$became stable with converting into oxide forms. A kinetic model for evaporation/condensation could predict maximum evaporation flux and the calculated values were compared with real evaporation flux. The ratio of two fluxes could be explained as the fraction of impinging gas molecules to the condensing surface( $\alpha$ ) and obtained in the range of 10$^{-3}$ ~10$^{-9}$ for the experimented toxic heavy metal chlorides. This ratio might be used to define the volatile extent or toxicity of such toxic metal compounds. The schemes to avoid volatilization of toxic heavy metals Into the atmosphere were suggested as follows ; 1 ) controlling the compositions of metals and Chlorine produced substances( such as PVC ) in the treated materials using a reverse estimation from regulatory limit and characteristics of a processing facility, 2) Installation of wet type devices such as a scrubber for condensing the metal compounds.

  • PDF

병류흐름 중공사 분리막에 의한 메탄 분리 수치해석 (Numerical Analysis for Separation of Methane by Hollow Fiber Membrane with Cocurrent Flow)

  • 이승민;서연희;강한창;김정훈;이용택
    • Korean Chemical Engineering Research
    • /
    • 제53권3호
    • /
    • pp.295-301
    • /
    • 2015
  • 폴리설폰 분리막을 이용한 바이오 메탄 가스 농축 특성을 이론적 방법으로 분석하였다. 병류 흐름 분리막 공정의 지배 방정식을 유도하고 Compaq Visual Fortran 6.6 소프트웨어를 이용하여 유도된 비선형 상미분 방정식을 수치 해석하였다. 공급 메탄 몰분율이 0.7로 주어진 전형적 운전조건에서 분리막 입구로부터 출구로 이동하면서 잔류 측 메탄몰분율은 0.7에서 0.76로 증가하였고 공급유량 대비 잔류유량 비는 1에서 0.79로 감소하였다. 공급 메탄 몰분율 또는 공급 압력이 증가할수록 잔류 측 메탄 몰분율은 증가하였다. 분리막 길이를 고정한 상태에서 분리막 면적이 감소하거나 투과 측 압력 대 공급 측 압력 비가 증가함에 따라 잔류 측 메탄 몰분율이 감소함을 확인하였다. 총 투과 분율이 증가할수록 잔류 측 메탄 몰분율은 증가하였고 메탄 회수율은 감소함을 관찰할 수 있었다.

Dynamic stability analysis of a rotary GPLRC disk surrounded by viscoelastic foundation

  • Liang, Xiujuan;Ji, Haixu
    • Geomechanics and Engineering
    • /
    • 제24권3호
    • /
    • pp.267-280
    • /
    • 2021
  • The research presented in this paper deals with dynamic stability analysis of the graphene nanoplatelets (GPLs) reinforced composite spinning disk. The presented small-scaled structure is simulated as a disk covered by viscoelastic substrate which is two-parametric. The centrifugal and Coriolis impacts due to the spinning are taken into account. The stresses and strains would be obtained using the first-order-shear-deformable-theory (FSDT). For Poisson ratio, as well as various amounts of mass densities, the mixture rule is employed, while a modified Halpin-Tsai model is inserted for achieving the elasticity module. The structure's boundary conditions (BCs) are obtained employing GPLs reinforced composite (GPLRC) spinning disk's governing equations applying principle of Hamilton which is based on minimum energy and ultimately have been solved employing numerical approach called generalized-differential quadrature-method (GDQM). Spinning disk's dynamic properties with different boundary conditions (BCs) are explained due to the curves drawn by Matlab software. Also, the simply-supported boundary conditions is applied to edges 𝜃=𝜋/2, and 𝜃=3𝜋/2, while, cantilever, respectively, is analyzed in R=Ri, and R0. The final results reveal that the GPLs' weight fraction, viscoelastic substrate, various GPLs' pattern, and rotational velocity have a dramatic influence on the amplitude, and vibration behavior of a GPLRC rotating cantilevered disk. As an applicable result in related industries, the spinning velocity impact on the frequency is more effective in the higher radius ratio's amounts.

Effects of micromechanical models on the dynamics of functionally graded nanoplate

  • Tao Hai;A. Yvaz;Mujahid Ali;Stanislav Strashnov;Mohamed Hechmi El Ouni;Mohammad Alkhedher;Arameh Eyvazian
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.191-206
    • /
    • 2023
  • The present research investigates how micromechanical models affect the behavior of Functionally Graded (FG) plates under different boundary conditions. The study employs diverse micromechanical models to assess the effective material properties of a two-phase particle composite featuring a volume fraction of particles that continuously varies throughout the thickness of the plate. Specifically, the research examines the vibrational response of the plate on a Winkler-Pasternak elastic foundation, considering different boundary conditions. To achieve this, the governing differential equations and boundary conditions are derived using Hamilton's principle, which is based on a four-variable shear deformation refined plate theory. Additionally, the Galerkin method is utilized to compute the plate's natural frequencies. The study explores how the plate's natural frequencies are influenced by various micromechanical models, such as Voigt, Reuss, Hashin-Shtrikman bounds, and Tamura, as well as factors such as boundary conditions, elastic foundation parameters, length-to-thickness ratio, and aspect ratio. The research results can provide valuable insights for future analyses of FG plates with different boundaries, utilizing different micromechanical models.

In situ ruminal degradation characteristics of dry matter and crude protein from dried corn, high-protein corn, and wheat distillers grains

  • Lee, Y.H.;Ahmadi, F.;Choi, D.Y.;Kwak, W.S.
    • Journal of Animal Science and Technology
    • /
    • 제58권9호
    • /
    • pp.33.1-33.7
    • /
    • 2016
  • Background: The continuing growth of the ethanol industry has generated large amounts of various distillers grains co-products. These are characterized by a wide variation in chemical composition and ruminal degradability. Therefore, their precise formulation in the ruminant diet requires the systematic evaluation of their degradation profiles in the rumen. Methods: Three distillers grains plus soluble co-products (DDGS) namely, corn DDGS, high-protein corn DDGS (HP-DDGS), and wheat DDGS, were subjected to an in situ trial to determine the degradation kinetics of the dry matter (DM) and crude protein (CP). Soybean meal (SBM), a feed with highly degradable protein in the rumen, was included as the fourth feed. The four feeds were incubated in duplicate at each time point in the rumen of three ruminally cannulated Hanwoo cattle for 1, 2, 4, 6, 8, 12, 24, and 48 h. Results: Wheat DDGS had the highest filterable and soluble A fraction of its DM (37.2 %), but the lowest degradable B (49.5 %; P < 0.001) and an undegradable C fraction (13.3 %; P < 0.001). The filterable and soluble A fraction of CP was greatest with wheat DDGS, intermediate with corn DDGS, and lowest with HP-DDGS and SBM; however, the undegradable C fraction of CP was the greatest with HP-DDGS (41.2 %), intermediate with corn DDGS (2.7 %), and lowest with wheat DDGS and SMB (average 4.3 %). The degradation rate of degradable B fraction ($%\;h^{-1}$) was ranked from highest to lowest as follows for 1) DM: SBM (13.3), wheat DDGS (9.1), and corn DDGS and HP-DDGS (average 5.2); 2) CP: SBM (17.6), wheat DDGS (11.6), and corn DDGS and HP-DDGS (average 4.4). The in situ effective degradability of CP, assuming a passage rate of $0.06h^{-1}$, was the highest (P < 0.001) for SBM (73.9 %) and wheat DDGS (71.2 %), intermediate for corn DDGS (42.5 %), and the lowest for HP-DDGS (28.6 %), which suggests that corn DDGS and HP-DDGS are a good source of undegraded intake protein for ruminants. Conclusions: This study provided a comparative estimate of ruminal DM and CP degradation characteristics for three DDGS co-products and SBM, which might be useful for their inclusion in the diet according to the ruminally undegraded to degraded intake protein ratio.

The Effective Preparation of Protopanaxadiol Saponin Enriched Fraction from Ginseng using the Ultrafiltration

  • Seol, Su Yeon;Kim, Bo Ram;Hong, Se Chul;Yoo, Ji Hyun;Lee, Kun Hee;Lee, Ho Joo;Park, Jong Dae;Pyo, Mi Kyung
    • Natural Product Sciences
    • /
    • 제20권1호
    • /
    • pp.58-64
    • /
    • 2014
  • In this study, edible protopanaxadiol saponin enriched fraction were prepared by ultrafiltration (UF). Ginseng extract was prepared from mixtures of ginseng main root and rootlet (root: rootlet = 4 : 6). UF system was used the four-piston Diaphragm pump equipped with 5 kDa pore size Hydrosart Cassette made by regenerated cellulose acetate (CA) or 3 kDa pore size Hollow Fiber cartridge made by polyethersulfone (PES). Total ginsenoside contents of concentrated fraction by UF system was found to higher, compared to before those of untreated method. Especially, processing of UF showed the increase of PPD-type ginsenoside, while PPT-type ginsenoside was gradually decreased by both 3 kDa and 5 kDa membrane. After removal of 80% water by the 5 kDa Hydrosart Cassette and by 3 kDa Hollow Fiber cartridge, ginsenoside Rb1 content was higher 37.2 mg/g and 25.3 mg/g than 20.8 mg/g in untreated process. The ratio of Rb1 to Rg1 (Rb1/Rg1) and PPD- to PPT- type ginsenoside (PPD/PPT) were higher in inner fluid of ginseng extract after UF by 3 kDa cartridge (47.1 and 23.5, respectively) and 5 kDa Cassette (25.3 and 11.9, respectively) than those of before UF (5.7 and 3.7, respectively). PPD-type ginsenoside enriched fraction by UF system could be developed as a new ginseng material in food and cosmetic industrials.

글라스 비즈 - 고무 분말 혼합물의 열전달 특성 연구 (Characterization of Thermal Properties for Glass Beads - Rubber Mixture)

  • 이정훈;윤태섭;매튜 에반스
    • 한국지반공학회논문집
    • /
    • 제27권11호
    • /
    • pp.39-45
    • /
    • 2011
  • 본 연구는 글라스 비드와 고무 혼합재의 부피비와 상대적인 크기 비에 따른 열적 거동에 관해 다루고 있다. 혼합 물질의 열전도도를 측정하기 위하여 비정상면열원법이 사용되었다. 개별요소법과 열 네트워크 모델을 결합하여 입상체 모사 시료에서 입자 단위의 열전달 매커니즘을 분석하였다. 실험 및 해석의 결과는 다음과 같다. 유효 열전도도는 고무의 부피비가 증가할수록 감소한다. 두 물질의 상대적인 크기는 열 전파경로의 대부분을 결정하는 입자간 접촉상태의 공간적 구성을 지배한다. 같은 부피비를 갖는 혼합물질 중에서, 열이 잘 흐르지 않는 물질(여기에서는 고무)의 입자 크기가 큰 경우 열전달이 더 원활하게 이루어진다. 이상의 실험결과와 입자 단위의 관찰은 물질의 열적 거동이 부피비 뿐 아니라 구성 성분의 공간적인 구성에도 영향을 받음을 보여준다.

초음파 공명 분광법(RUS)을 이용한 SiC 입자강화 Al 기지복합재료의 탄성계수 해석 (Analysis of Elastic Constants in SiC Particulate Reinforced Al Matrix Composites by Resonant Ultrasound Spectroscopy)

  • 정현규;정용무;주영상;홍순형
    • 비파괴검사학회지
    • /
    • 제19권3호
    • /
    • pp.180-188
    • /
    • 1999
  • SiC 입자강화 2124Al 금속복합재료의 강화재 부피분율에 따른 탄성 stiffness를 초음파 공명 스펙트로스코피(resonant ultrasound spectroscopy: RUS) 방법을 이용하여 측정하였다. RUS 방법은 한 개의 소형 시편으로 9개의 독립변수를 가진 사방정계(orthorhombic) 탄성계수를 간단한 실험으로 측정 가능함을 보여주었다. SiC 강화재 부피분율 변화에 따른 탄성계수를 측정하였는데 이 경우 초기 추정 탄성계수를 구하기 위해서 부피 분율에 따른 미세조직 사진으로부터 강화재의 형상(aspect ratio)과 방향을 고려한 유효 aspect ratio 개념을 도입하였고. Mori-Tanaka 이론식에 의한 계산결과를 이용하였다. 이로부터 계산된 공진주파수와 RUS의 측정 공진주파수 사이를 최소화함으로 정확한 탄성계수를 측정하였다. 측정된 stiffnesses로부터 공학적 탄성계수인 Young's modulus를 계산하였으며, 계산된 Young's modulus와 압출방향으로 인장 시험한 Young's modulus를 비교분석 하였다. SiC 입자의 부피분율이 증가함에 따라 탄성계수가 증가함을 나타내었고, 탄성 stiffness의 거동은 강화재가 많이 첨가될수록 횡등방성(transversely isotropic)이 강하게 나타났으며 이것은 압출공정에 의해 강화재 입자의 방향성 재배열에 기인한다. 한편 일정크기 시편에 있어서 기본 공진주파수가 강화재 부피분율에 따라 고주파수 영역으로 이동하는 현상이 관찰되었으며, 이로 부터 비파괴적으로 강화재 부피분율을 예측할 수 있는 가능성을 제시하였다.

  • PDF

Is partial hepatectomy a curable treatment option for hepatocellular carcinoma accompanied by cirrhosis? A meta-analysis and cure model analysis

  • Byungje Bae;Keera Kang;Sung Kyu Song;Chul-Woon Chung;Yongkeun Park
    • 한국간담췌외과학회지
    • /
    • 제26권1호
    • /
    • pp.47-57
    • /
    • 2022
  • Backgrounds/Aims: It is challenging to assess the efficacy of partial hepatectomy (PH) as a treatment option for patients with hepatocellular carcinoma (HCC) accompanied by cirrhosis. This study aimed to determine the cure fraction of PH for HCC accompanied by cirrhosis compared to that for HCC without cirrhosis. Methods: A systematic review was performed on outcomes of previous studies that compared recurrence-free survival (RFS) after PH in patients with HCC with or without cirrhosis. A meta-analysis was conducted to obtain the cumulative hazard ratio for two patient groups: cirrhosis and non-cirrhosis. Cure fractions after PH in both groups were determined using a cure model analysis. Results: A total of 18 studies were eligible for meta-analysis and 13 studies were selected for the cure model analysis. The cumulative hazard ratio for RFS of the cirrhosis group compared to that of the non-cirrhosis group was 1.66 (95% confidence interval [CI], 1.43-1.93). Survival data of 3,512 patients in both groups were reconstructed from survival curves of original articles for cure model analysis. The probability of being statistically cured after PH for HCC was 14.1% (95% CI, 10.6%-18.1%) in the cirrhosis group lower than that (32.5%) in the non-cirrhosis group (95% CI, 28.6%-36.4%). Conclusions: The prognosis after PH for HCC accompanied by cirrhosis is inferior to that for HCC without cirrhosis. However, a cure can be expected for one-seventh of patients with HCC accompanied by cirrhosis after PH.