• Title/Summary/Keyword: fractal model

Search Result 171, Processing Time 0.019 seconds

Discussions on the Distribution and Genesis of Mountain Ranges in the Korean Peninsular (II) : The Proposal of 'Sanjulgi-Jido(Mountain Ridge Map)‘ (한국 산맥론(II): 한반도 '산줄기 지도'의 제안)

  • Park Soo Jin;SON ILL
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.3 s.108
    • /
    • pp.253-273
    • /
    • 2005
  • In recent years, there are strong social demands to characterize the spatial distribution of mountains in Korea. This study aims to develop a 'Sanjulgi-Jido(mountain ridge map)' that might be used not only to satisfy these social demands but also to effectively present the spatial distribution of mountains and drainage basins in the Korean Peninsular. The 'Sanjulgi-Jido' developed in this study is a map that presents the continuity of mountains based on the drainage divides that are delineated by a pre-defined drainage basin size and elevation. This study first validated the Bakdudaegan system through the analyses of a digital elevation model. The Bakdudaegan system has long been recognized as the Koreans traditional conceptual framework to characterize the spatial distribution of mountains. The analyses showed that the Bakdudaegan system has several problems to represent the mountain systems in Korea, which includes 1) the lack of the representativeness of drainage basins, 2) inaccuracy to depict the boundary of drainage basins, 3) the lack of representativeness of mountains, and 4) geo-polical issue that confines the spatial extent of mountain systems within the Korean Peninsular. In order to represent the mountains system in a more quantitative manner, we applied several terrain analysis techniques to understand the spatial distribution of mountains and drainage basins. Based on these analyses, we developed an hierarchical system to classify the continuity (If mountains, which are presented as the spatial distribution of drainage divides with a certain elevation. The first-order Sanjulgi is the drainage divides whose drainage basin are bigger than $5,000km^2$ and the point elevation is above 100m. The next order Sanjulgi is delineated as the size of drainage basin is successively divided by two. This kind of design is able to provide a logical framework to present the mountain systems at different details, depending on the purpose and scale of maps. We also provide several empirical functions to calculate various geomorphological indices for each order of Sanjulgi. The 'Sanjulgi Jido' is similar with the Bakdudaegan system, since it characterizes the continuity of mountains based on the spatial distribution of the drainage divide. It, however, has more scientific criteria to define the scale and continuity of mountains. It should be also noted that the 'Sanjulgi Jido' proposed has different logical and methodological background, compared with the mountain range map that explains the genesis of mountain systems in addition to the continuity of mountains.