• 제목/요약/키워드: fourier series

검색결과 622건 처리시간 0.019초

제천(提川) 서남부(西南部) 옥천대(沃川帶) 지역(地域)에 대(對)한 중력탐사연구(重力探査硏究) (Gravity Survey on the Southwestern Area of Jechǒn in the Okchǒn Zone)

  • 민경덕;박혜심
    • 자원환경지질
    • /
    • 제22권2호
    • /
    • pp.91-102
    • /
    • 1989
  • The gravity measurement has been conducted at 61 stations with an interval of about 500 to 1,000 m along two survey lines of about 47 Km between $Chungju-Jech{\check{o}}n$ and $Salmi-D{\check{o}}cksanmy{\check{o}}n$ in order to study on the subsurface geologic structure and structural relation between $Okch{\check{o}}n$ Group and Great Limestone Group of $Chos{\check{o}}n$ Supergroup. The Bouger gravity anomalies were obtained from the reduction of the field observations, and the distribution patterns of the basement and subsurface geologic structure were interpreted by means of the Fourier-Series and Talwani method for two-dimensional body. The depth of Conrad discontinuity varies from 12.7 Km to 15.7 Km, and vertical displacements along the Osanri and Bonghwajae faults are 1.0 Km and 1.5 Km, respectively between Chungju and $Jech{\check{o}}n$. The depth of Conrad discontinuity varies from 13.8 Km to 15.4 Km, and vertical displacement along the Bonghwajae fault is 0.5 Km between Salmi and $D{\check{o}}cksanmyon$. The basement is widely exposed at several places between Chungju and $Jech{\check{o}}n$. In the unexposed area between Osanri and $W{\check{o}}lgulri$, its depth is from 1.5 Km to 2.1 Km. It is displaced downward along the Osanri and Bonghwajae faults by 0.8 Km and 0.6 Km, respectively, and is displaced upward along the Dangdusan fault by 1.6 Km. On the other hand, the depth of the basement varies abruptly by the Sindangri, Jungwon, Kounri, and Bonghwajae faults between Salmi and $D{\check{o}}cksanmy{\check{o}}n$, and it is from 2.8 Km to 3.2 Km around $Salmimy{\check{o}}n$, from 1.6 Km to 2.5 Km between the Sindangri and Bonghwajae faults, 3.0 Km near Koburangjae, and 2.5 Km at $Doj{\check{o}}nri$. The high Bouguer gravity anomalies are due to the accumulation of $Okch{\check{o}}n$ Group and $Jangs{\check{o}}nri$ Metamorphic Complex whose density is higher than the basement exposed between Sondong and Osanri, and imply the existance of Bonghwajae Metabasite or hornblende gabbro of high density distributed along the Bonghwajae fault in the vicinity of Koburangjae. The low Bouguer gravity anomalies resulted form the fracture zone associated with fault or rock of low density imply the existance of the Osanri, Bonghwajae, Dangdusan faults and $Daed{\check{o}}cksan$ thrust between Chungju and $Jech{\check{o}}n$, the uplift of the basement by the Sindangri, Jungwon, Kounri, and Bonghwajae faults, and extensive distribution of Cretaceous biotite granites between Salmi and $Docksanmy{\check{o}}n$. The thickness of $Okch{\check{o}}n$ metasediments varies from 1.5 Km to 3.2 Km, and that of Great Limestone Group of $Chos{\check{o}}n$ Supergroup from 200 m to 700 m. It is interpreted that $Okch{\check{o}}n$ Group is in contact with Great Limestone Group of $Chos{\check{o}}n$ Supergroup by the fault zones of the Bonghwajae and $Daed{\check{o}}cksan$ faults, and the Bongwhajae fault is a thrust of high angle, by which the east of the basement is displaced downward 0.5 Km between Chungju and lechon, and 1.0 Km between Salmi and $D{\check{o}}cksanmy{\check{o}}n$.

  • PDF

편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화 (A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing)

  • 이승현;김민영
    • 전자공학회논문지
    • /
    • 제50권8호
    • /
    • pp.253-263
    • /
    • 2013
  • 광학측정기법 중 주파수 스캐닝 간섭계는 기존 3차원 측정기법과 비교하여 광학 하드웨어 구조가 측정과정동안 고정되어 있어, 대물렌즈나 대상물체의 수직 스캐닝 없이 단지 광원의 주파수만 특정한 주파수 밴드내에서 스캐닝 하여 대상물체에 주사되므로, 우수한 광학 측정 성능을 보인다. 광원의 주파수를 변경하여 간섭계를 통해 간섭 영상을 획득한 후, 밝기 영상 데이터를 주파수 영역 데이터로 변환하고, 고속 푸리에 변환을 통한 주파수 분석을 이용하여 대상 물체의 높이 정보를 계측한다. 하지만, 대상물체의 광학적 특성에 기인한 광학노이즈와 주파수 스캐닝동안 획득되는 영상의 수에 따라 증가하는 영상처리시간은 여전히 주파수 스캐닝 간섭계의 문제이다. 이를 위해, 1) 편광기반 주파수 스캐닝 간섭계가 광학 노이즈에 대한 강인성을 확보하기 위해 제안되어진다. 시스템은 주파수 변조 레이저, 참조 거울 앞단의 ${\lambda}/4$ 판, 대상 물체 앞단의 ${\lambda}/4$ 판, 편광 광분배기, 이미지 센서 앞단의 편광기, 광섬유 광원 앞단의 편광기, 편광 광분배기와 광원의 편광기 사이에 위치하는 ${\lambda}/2$ 판으로 구성된다. 제안된 시스템을 이용하여, 편광을 기반으로한 간섭이미지의 대조대비를 조절할 수 있다. 2) 신호처리 고속화 방법이 간섭계 시스템을 위해 제안되며, 이는 그래픽 처리 유닛(GPU)과 같은 병렬처리 하드웨어와 계산 통합 기기 구조(CUDA)와 같은 프로그래밍 언어로 구현된다. 제안된 방법을 통해 신호처리 시간은 실시간 처리가 가능한 작업시간을 얻을 수 있었다. 최종적으로 다양한 실험을 통해 제안된 시스템을 정확도와 신호처리 시간의 관점으로 평가하였고, 실험결과를 통해 제안한 시스템이 광학측정기법의 실적용을 위해 효율적임을 보였다.